108 lines
3.9 KiB
R
Raw Normal View History

2025-01-12 00:52:51 +08:00
options(na.action=na.exclude) # preserve missings
options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
library(survival)
aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...)
fit1 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian)
fit4 <- survreg(Surv(log(futime), fustat) ~age + ecog.ps, ovarian,
dist='extreme')
print(fit1)
summary(fit4)
# Hypothesis (and I'm fairly sure): censorReg shares the fault of many
# iterative codes -- it returns the loglik and variance for iteration k
# but the coef vector of iteration k+1. Hence the "all.equal" tests
# below don't come out perfect.
#
if (exists('censorReg')) { #true for Splus, not R
fit2 <- censorReg(censor(futime, fustat) ~ age + ecog.ps, ovarian)
fit3 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian,
iter=0, init=c(fit2$coef, log(fit2$scale)))
aeq(resid(fit2, type='working')[,1], resid(fit3, type='working'))
aeq(resid(fit2, type='response')[,1], resid(fit3, type='response'))
temp <- sign(resid(fit3, type='working'))
aeq(resid(fit2, type='deviance')[,1],
temp*abs(resid(fit3, type='deviance')))
aeq(resid(fit2, type='deviance')[,1], resid(fit3, type='deviance'))
}
#
# Now check fit1 and fit4, which should follow identical iteration paths
# These tests should all be true
#
aeq(fit1$coef, fit4$coef)
resid(fit1, type='working')
resid(fit1, type='response')
resid(fit1, type='deviance')
resid(fit1, type='dfbeta')
resid(fit1, type='dfbetas')
resid(fit1, type='ldcase')
resid(fit1, type='ldresp')
resid(fit1, type='ldshape')
resid(fit1, type='matrix')
aeq(resid(fit1, type='working'),resid(fit4, type='working'))
#aeq(resid(fit1, type='response'), resid(fit4, type='response'))#should differ
aeq(resid(fit1, type='deviance'), resid(fit4, type='deviance'))
aeq(resid(fit1, type='dfbeta'), resid(fit4, type='dfbeta'))
aeq(resid(fit1, type='dfbetas'), resid(fit4, type='dfbetas'))
aeq(resid(fit1, type='ldcase'), resid(fit4, type='ldcase'))
aeq(resid(fit1, type='ldresp'), resid(fit4, type='ldresp'))
aeq(resid(fit1, type='ldshape'), resid(fit4, type='ldshape'))
aeq(resid(fit1, type='matrix'), resid(fit4, type='matrix'))
#
# Some tests of the quantile residuals
#
# These should agree exactly with Ripley and Venables' book
fit1 <- survreg(Surv(time, status) ~ temp, data=imotor)
summary(fit1)
#
# The first prediction has the SE that I think is correct
# The third is the se found in an early draft of Ripley; fit1 ignoring
# the variation in scale estimate, except via it's impact on the
# upper left corner of the inverse information matrix.
# Numbers 1 and 3 differ little for this dataset
#
predict(fit1, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T)
fit2 <- survreg(Surv(time, status) ~ temp, data=imotor, scale=fit1$scale)
predict(fit2, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T)
fit3 <- fit2
fit3$var <- fit1$var[1:2,1:2]
predict(fit3, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T)
pp <- seq(.05, .7, length=40)
xx <- predict(fit1, data.frame(temp=130), type='uquantile', se=T,
p=pp)
#matplot(pp, cbind(xx$fit, xx$fit+2*xx$se, xx$fit - 2*xx$se), type='l')
#
# Now try out the various combinations of strata, #predicted, and
# number of quantiles desired
#
fit1 <- survreg(Surv(time, status) ~ inst + strata(inst) + age + sex, lung)
qq1 <- predict(fit1, type='quantile', p=.3, se=T)
qq2 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T)
aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
aeq(qq1$fit, qq2$fit[,2])
aeq(qq1$se.fit, qq2$se.fit[,2])
qq3 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T,
newdata= lung[1:5,])
aeq(qq3$fit, qq2$fit[1:5,])
qq4 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung[7,])
aeq(qq4$fit, qq2$fit[7,])
qq5 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung)
aeq(qq2$fit, qq5$fit)
aeq(qq2$se.fit, qq5$se.fit)