275 lines
8.9 KiB
Plaintext
Raw Normal View History

2025-01-12 00:52:51 +08:00
R Under development (unstable) (2024-04-17 r86441) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> options(na.action=na.exclude) # preserve missings
> options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
> library(survival)
>
> #
> # Tests from the appendix of Therneau and Grambsch
> # d. Data set 2 and Efron estimate
> #
> test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8),
+ stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17),
+ event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0),
+ x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0))
>
> byhand <- function(beta, newx=0) {
+ r <- exp(beta)
+ loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) +
+ log(2*r +2))
+ u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) -
+ ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1))
+ imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 +
+ 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2)
+
+ hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1),
+ 1/(3*r+2), 1/(2*r +2) )
+
+
+ # The matrix of weights, one row per obs, one col per time
+ # deaths at 2,3,6,7,8,9
+ wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0,
+ 0,1,0,1,1, 0, 0,0,0,0,
+ 0,0,1,1,1, 0, 1,1,0,0,
+ 0,0,0,1,1, 0, 1,1,0,0,
+ 0,0,0,0,1, 1, 1,1,0,0,
+ 0,0,0,0,0, 1, 1,1,1,1,
+ 0,0,0,0,0,.5,.5,1,1,1), ncol=7)
+ wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat
+
+ x <- c(1,0,0,1,0,1,1,1,0,0)
+ status <- c(1,1,1,1,1,1,1,0,0,0)
+ xbar <- colSums(wtmat*x)/ colSums(wtmat)
+ n <- length(x)
+
+ # Table of sums for score and Schoenfeld resids
+ hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time
+ dM <- -hazmat #Expected part
+ for (i in 1:5) dM[i,i] <- dM[i,i] +1 #observed
+ dM[6:7,6:7] <- dM[6:7,6:7] +.5 # observed
+ mart <- rowSums(dM)
+
+ # Table of sums for score and Schoenfeld resids
+ # Looks like the last table of appendix E.2.1 of the book
+ resid <- dM * outer(x, xbar, '-')
+ score <- rowSums(resid)
+ scho <- colSums(resid)
+
+ # We need to add the ties back up (they are symmetric)
+ scho[6:7] <- rep(mean(scho[6:7]), 2)
+
+ list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard,
+ mart=mart, score=score, rmat=resid,
+ scho=scho)
+ }
>
>
> aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
>
> fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0)
> truth0 <- byhand(0,0)
> aeq(truth0$loglik, fit0$loglik[1])
[1] TRUE
> aeq(1/truth0$imat, fit0$var)
[1] TRUE
> aeq(truth0$mart, fit0$residuals)
[1] TRUE
> aeq(truth0$scho, resid(fit0, 'schoen'))
[1] TRUE
> aeq(truth0$score, resid(fit0, 'score'))
[1] TRUE
>
>
> fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8, nocenter=NULL)
> truth <- byhand(fit$coefficients, 0)
> aeq(truth$loglik, fit$loglik[2])
[1] TRUE
> aeq(1/truth$imat, fit$var)
[1] TRUE
> aeq(truth$mart, fit$residuals)
[1] TRUE
> aeq(truth$scho, resid(fit, 'schoen'))
[1] TRUE
> aeq(truth$score, resid(fit, 'score'))
[1] TRUE
>
> # Reprise the test, with strata
> # offseting the times ensures that we will get the wrong risk sets
> # if strata were not kept separate
> test2b <- rbind(test2, test2, test2)
> test2b$group <- rep(1:3, each= nrow(test2))
> test2b$start <- test2b$start + test2b$group
> test2b$stop <- test2b$stop + test2b$group
> fit0 <- coxph(Surv(start, stop, event) ~ x + strata(group), test2b, iter=0)
> aeq(3*truth0$loglik, fit0$loglik[1])
[1] TRUE
> aeq(3*truth0$imat, 1/fit0$var)
[1] TRUE
> aeq(rep(truth0$mart,3), fit0$residuals)
[1] TRUE
> aeq(rep(truth0$scho,3), resid(fit0, 'schoen'))
[1] TRUE
> aeq(rep(truth0$score,3), resid(fit0, 'score'))
[1] TRUE
>
> fit3 <- coxph(Surv(start, stop, event) ~x + strata(group), test2b, eps=1e-8)
> aeq(3*truth$loglik, fit3$loglik[2])
[1] TRUE
> aeq(3*truth$imat, 1/fit3$var)
[1] TRUE
> aeq(rep(truth$mart,3), fit3$residuals)
[1] TRUE
> aeq(rep(truth$scho,3), resid(fit3, 'schoen'))
[1] TRUE
> aeq(rep(truth$score,3), resid(fit3, 'score'))
[1] TRUE
>
> #
> # Done with the formal test, now print out lots of bits
> #
> resid(fit)
1 2 3 4 5 6
0.50527611 0.66432995 0.79746211 0.22435805 -0.55144018 0.42933697
7 8 9 10
-0.01764508 -1.14132605 -0.45517594 -0.45517594
> resid(fit, 'scor')
1 2 3 4 5 6 7
0.2553039 -0.2183386 -0.4744295 -0.1101520 0.1137126 0.2491954 0.1057078
8 9 10
-0.4119611 0.2454808 0.2454808
> resid(fit, 'scho')
2 3 6 7 8 9 9
0.5052761 -0.3286599 -0.5949242 0.2539781 -0.7460219 0.4551759 0.4551759
>
> predict(fit, type='lp')
[1] -0.0105526 0.0105526 0.0105526 -0.0105526 0.0105526 -0.0105526
[7] -0.0105526 -0.0105526 0.0105526 0.0105526
> predict(fit, type='risk')
[1] 0.9895029 1.0106085 1.0106085 0.9895029 1.0106085 0.9895029 0.9895029
[8] 0.9895029 1.0106085 1.0106085
> predict(fit, type='expected')
1 2 3 4 5 6 7 8
0.4947239 0.3356701 0.2025379 0.7756420 1.5514402 0.5706630 1.0176451 1.1413261
9 10
0.4551759 0.4551759
> predict(fit, type='terms')
x
1 -0.0105526
2 0.0105526
3 0.0105526
4 -0.0105526
5 0.0105526
6 -0.0105526
7 -0.0105526
8 -0.0105526
9 0.0105526
10 0.0105526
attr(,"constant")
[1] -0.0105526
> predict(fit, type='lp', se.fit=T)
$fit
1 2 3 4 5 6 7
-0.0105526 0.0105526 0.0105526 -0.0105526 0.0105526 -0.0105526 -0.0105526
8 9 10
-0.0105526 0.0105526 0.0105526
$se.fit
1 2 3 4 5 6 7 8
0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884
9 10
0.3975884 0.3975884
> predict(fit, type='risk', se.fit=T)
$fit
1 2 3 4 5 6 7 8
0.9895029 1.0106085 1.0106085 0.9895029 1.0106085 0.9895029 0.9895029 0.9895029
9 10
1.0106085 1.0106085
$se.fit
1 2 3 4 5 6 7 8
0.3954962 0.3996918 0.3996918 0.3954962 0.3996918 0.3954962 0.3954962 0.3954962
9 10
0.3996918 0.3996918
> predict(fit, type='expected', se.fit=T)
$fit
1 2 3 4 5 6 7 8
0.4947239 0.3356701 0.2025379 0.7756420 1.5514402 0.5706630 1.0176451 1.1413261
9 10
0.4551759 0.4551759
$se.fit
[1] 0.5331623 0.3940109 0.3241963 0.6388491 1.0026838 0.6453101 0.7848594
[8] 0.7848594 0.6401915 0.6401915
> predict(fit, type='terms', se.fit=T)
$fit
x
1 -0.0105526
2 0.0105526
3 0.0105526
4 -0.0105526
5 0.0105526
6 -0.0105526
7 -0.0105526
8 -0.0105526
9 0.0105526
10 0.0105526
attr(,"constant")
[1] -0.0105526
$se.fit
x
1 0.3975884
2 0.3975884
3 0.3975884
4 0.3975884
5 0.3975884
6 0.3975884
7 0.3975884
8 0.3975884
9 0.3975884
10 0.3975884
>
> summary(survfit(fit))
Call: survfit(formula = fit)
time n.risk n.event survival std.err lower 95% CI upper 95% CI
2 2 1 0.607 0.303 0.2277 1.000
3 3 1 0.435 0.262 0.1337 1.000
6 5 1 0.356 0.226 0.1029 1.000
7 4 1 0.277 0.189 0.0729 1.000
8 4 1 0.215 0.157 0.0516 0.899
9 5 2 0.137 0.109 0.0288 0.655
> summary(survfit(fit, list(x=2)))
Call: survfit(formula = fit, newdata = list(x = 2))
time n.risk n.event survival std.err lower 95% CI upper 95% CI
2 2 1 0.616 0.465 0.14013 1
3 3 1 0.447 0.519 0.04568 1
6 5 1 0.368 0.504 0.02512 1
7 4 1 0.288 0.464 0.01232 1
8 4 1 0.226 0.418 0.00603 1
9 5 2 0.146 0.343 0.00147 1
>
> proc.time()
user system elapsed
0.456 0.012 0.465