84 lines
2.5 KiB
R
84 lines
2.5 KiB
R
|
suppressMessages(library(doParallel))
|
||
|
cl <- makePSOCKcluster(4)
|
||
|
registerDoParallel(cl)
|
||
|
|
||
|
cat(sprintf('doParallel %s\n', packageVersion('doParallel')))
|
||
|
junk <- matrix(0, 1000000, 8)
|
||
|
cat(sprintf('Size of extra junk data: %d bytes\n', object.size(junk)))
|
||
|
|
||
|
x <- iris[which(iris[,5] != "setosa"), c(1,5)]
|
||
|
|
||
|
trials <- 10000
|
||
|
|
||
|
ptime <- system.time({
|
||
|
r <- foreach(icount(trials), .combine=cbind,
|
||
|
.export='junk') %dopar% {
|
||
|
ind <- sample(100, 100, replace=TRUE)
|
||
|
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
|
||
|
coefficients(result1)
|
||
|
}
|
||
|
})[3]
|
||
|
cat(sprintf('parallel foreach: %6.1f sec\n', ptime))
|
||
|
|
||
|
ptime2 <- system.time({
|
||
|
snowopts <- list(preschedule=TRUE)
|
||
|
r <- foreach(icount(trials), .combine=cbind,
|
||
|
.export='junk', .options.snow=snowopts) %dopar% {
|
||
|
ind <- sample(100, 100, replace=TRUE)
|
||
|
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
|
||
|
coefficients(result1)
|
||
|
}
|
||
|
})[3]
|
||
|
cat(sprintf('parallel foreach with prescheduling: %6.1f sec\n', ptime2))
|
||
|
|
||
|
|
||
|
ptime3 <- system.time({
|
||
|
chunks <- getDoParWorkers()
|
||
|
r <- foreach(n=idiv(trials, chunks=chunks), .combine=cbind,
|
||
|
.export='junk') %dopar% {
|
||
|
y <- lapply(seq_len(n), function(i) {
|
||
|
ind <- sample(100, 100, replace=TRUE)
|
||
|
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
|
||
|
coefficients(result1)
|
||
|
})
|
||
|
do.call('cbind', y)
|
||
|
}
|
||
|
})[3]
|
||
|
cat(sprintf('chunked parallel foreach: %6.1f sec\n', ptime3))
|
||
|
|
||
|
ptime4 <- system.time({
|
||
|
mkworker <- function(x, junk) {
|
||
|
force(x)
|
||
|
force(junk)
|
||
|
function(i) {
|
||
|
ind <- sample(100, 100, replace=TRUE)
|
||
|
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
|
||
|
coefficients(result1)
|
||
|
}
|
||
|
}
|
||
|
y <- parLapply(cl, seq_len(trials), mkworker(x, junk))
|
||
|
r <- do.call('cbind', y)
|
||
|
})[3]
|
||
|
cat(sprintf('parLapply: %6.1f sec\n', ptime4))
|
||
|
|
||
|
stime <- system.time({
|
||
|
y <- lapply(seq_len(trials), function(i) {
|
||
|
ind <- sample(100, 100, replace=TRUE)
|
||
|
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
|
||
|
coefficients(result1)
|
||
|
})
|
||
|
r <- do.call('cbind', y)
|
||
|
})[3]
|
||
|
cat(sprintf('sequential lapply: %6.1f sec\n', stime))
|
||
|
|
||
|
stime2 <- system.time({
|
||
|
r <- foreach(icount(trials), .combine=cbind) %do% {
|
||
|
ind <- sample(100, 100, replace=TRUE)
|
||
|
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
|
||
|
coefficients(result1)
|
||
|
}
|
||
|
})[3]
|
||
|
cat(sprintf('sequential foreach: %6.1f sec\n', stime2))
|
||
|
|
||
|
stopCluster(cl)
|