258 lines
9.2 KiB
R
Raw Normal View History

2025-01-12 00:52:51 +08:00
library(survival)
aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...)
# This is a test of the influence matrix for an Andersen-Gill fit, using the
# formulas found in the methods document, and implemented in the survfitaj.c
# code. As much as anything it was a help in debugging -- both the mathematics
# and the program.
# The test case below has tied events, tied event/censoring, entry in mutiple
# states, staggered entry, repeated events for a subject, varying case weights
# within a subject, ... on purpose
tdata <- data.frame(id= c(1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6),
t1= c(0, 4, 9, 1, 5, 2, 0, 2, 5, 8, 1, 3, 3, 5),
t2= c(4, 9, 10, 5, 7, 9, 2, 5, 8, 9, 3, 11, 5, 8),
st= c(2, 3, 2, 3, 1, 2, 2, 4, 4, 1, 3, 1, 3, 2),
i0= c(1, 2, 3, 2, 3, 1, 1, 2, 4, 4, 4, 3, 2, 3),
wt= c(1:8, 8:3))
tdata$st <- factor(tdata$st, c(1:4),
labels=c("censor", "a", "b", "c"))
tdata$i0 <- factor(tdata$i0, 1:4,
labels=c("entry","a", "b", "c"))
check <- survcheck(Surv(t1, t2,st) ~1, tdata, id=id, istate=i0)
if (FALSE) {
#useful picture
plot(c(0,11), c(1,6.5), type='n', xlab="Time", ylab= "Subject")
with(tdata, segments(t1+.1, id, t2, id, col=as.numeric(check$istate)))
with(subset(tdata, st!= "censor"),
text(t2, id+.15, as.character(st)))
with(tdata, text((t1+t2)/2, id+.25, wt))
with(subset(tdata, !duplicated(id)),
text(t1, id+.15, as.character(i0)))
#segments are colored by current state, case weight in center, events at ends
abline(v=c(2:5, 8:11), lty=3, col='gray')
}
# Compute the unweighted per observation leverages, using the approach in
# the methods document, as a check of both it and the C code.
# These IJ residuals can be directly verified using emprical derivatives,
# and collapsed to test the weighted+collapsed results from survfitAJ.
#
survfitaj <- function(t1, t2, state, istate=NULL, wt, id, p0, start.time=NULL,
debug = FALSE) {
check <- survcheck(Surv(t1, t2, state) ~ 1, id=id, istate=istate)
if (any(check$flag >0)) stop("failed survcheck")
states <- check$states
nstate <- length(states)
istate <- check$istate # will have the correct levels
isn <- as.numeric(istate)
n <- length(t1)
if (length(t2) !=n || length(state) !=n || length(istate) !=n ||
length(wt) !=n || length(id) !=n) stop("input error")
newstate <- factor(state, unique(c(levels(state)[1], states)))
Y <- Surv(t1, t2, newstate) # makes the levels match up
position <- survival:::survflag(Y, id)
uid <- unique(id)
nid <- length(uid)
id <- match(id, uid) # turn it into 1,2,...
event <- (Y[,3] >0)
U <- A <- matrix(0, n, nstate) # per observation influence, unweighted
if (missing(p0)) {
if (!missing(start.time)) t0 <- start.time
else {
if (all(Y[, 3] ==0)) t0 <- min(Y[, 2]) # no events!
else t0 <- min(Y[event, 2])
}
atrisk <- (Y[,1] < t0 & Y[,2] >= t0)
wtsum <- sum(wt[atrisk]) # weights at that time
p0 <- tapply(wt[atrisk], istate[atrisk], sum) / wtsum
p0 <- ifelse(is.na(p0), 0, p0) #if a state has no one, tapply =NA
if (all(p0 <1)) { # compute intitial leverage
for (j in 1:nstate) {
U[atrisk,j] <- (ifelse(istate[atrisk]==states[j], 1, 0)
- p0[j])/wtsum
}
}
} else {
if (missing(start.time)) t0 <- 0 else t0 <- start.time
}
utime <- sort(unique(c(0, Y[event | position>1, 2])))
ntime <- length(utime)
phat <- matrix(0, ntime, nstate)
phat[1,] <- p0
n.risk <- matrix(0, ntime, nstate)
n.risk[1,] <- table(istate[Y[,1]< start.time & Y[,2] > start.time])
# count the number of transitions, and make an index to them
temp <- table(istate[event], factor(Y[event,3], 1:nstate, states))
trmat <- cbind(from= row(temp)[temp>0], to= col(temp)[temp>0])
nhaz <- nrow(trmat)
n.event <- matrix(0, ntime, nhaz)
C <- matrix(0, n, nhaz)
chaz <- matrix(0, ntime, nhaz)
hash <- trmat %*% c(1,10)
tindx <- match(isn + 10*Y[,3], hash, nomatch=0) #index to transitions
# at this point I have the initial inflence matrices (U= pstate,
# C= cumhaz, A= auc). The auc and cumhaz are 0 at the starting point
# so their influence is 0.
Usave <- array(0, dim=c(dim(U), ntime))
Usave[,,1] <- U
Csave <- array(0, dim= c(dim(C), ntime)) #chaz and AUC are 0 at start.time
Asave <- array(0, dim= c(dim(A), ntime))
for (it in 2:ntime) {
# AUC
if (it==2) delta <- utime[it]- t0
else delta <- utime[it] - utime[it-1]
A <- A + delta* U
# count noses
atrisk <- (t1 < utime[it] & t2 >= utime[it])
temp <- tapply(wt[atrisk], istate[atrisk], sum)
n.risk[it,] <- ifelse(is.na(temp), 0, temp)
event <- (Y[,2]== utime[it] & Y[,3]>0)
temp <- tapply(wt[event], factor(tindx[event], 1:nhaz), sum)
n.event[it,] <- ifelse(is.na(temp), 0, temp)
# Add events to C and create the H matrix
H <- diag(nstate)
for (i in which(event)) {
j <- isn[i] # from, to, and transition indices
k <- Y[i,3]
jk <- match(j+10*k, hash)
C[i, jk] <- C[i, jk] + 1/n.risk[it,j]
if (j!=k) {
H[j,j] <- H[j,j] - wt[i]/n.risk[it,j]
H[j,k] <- H[j,k] + wt[i]/n.risk[it,j]
}
}
U <- U %*% H
phat[it,] <- phat[it-1,] %*% H
if (debug) browser()
# Add events to U
for (i in which(event)) {
j <- isn[i] # from, to, and transition indices
k <- Y[i,3]
if (j != k) {
U[i,j] <- U[i,j] - phat[it-1,j]/n.risk[it,j]
U[i,k] <- U[i,k] + phat[it-1,j]/n.risk[it,j]
}
}
if (debug) browser()
# now the hazard part
for (h in which(n.event[it,] >0)) {
j <- trmat[h,1]
k <- trmat[h,2]
haz <- n.event[it,h]/n.risk[it, j]
h2 <- haz/n.risk[it,j]
who <- (atrisk & isn ==j) # at risk, currently in state j
C[who,h] <- C[who,h] - h2
if (j != k) {
U[who,j] <- U[who,j] + h2 * phat[it-1,j]
U[who,k] <- U[who,k] - h2 * phat[it-1,j]
}
}
if (debug) browser()
Usave[,,it] <- U
Csave[,,it] <- C
Asave[,,it] <- A
}
colnames(n.event) <- paste(trmat[,1], trmat[,2], sep=':')
colnames(n.risk) <- check$states
colnames(phat) <- check$states
list(time = utime, n.risk= n.risk, n.event=n.event, pstate= phat,
C=Csave, U=Usave, A=Asave)
}
mfit <- survfit(Surv(t1, t2, st) ~ 1, tdata, id=id, istate=i0,
weights=wt, influence=TRUE)
mtest <- with(tdata, survfitaj(t1, t2, st, i0, wt, id))
# mtest <- with(tdata, survfitaj(t1, t2, st, i0, wt, id, debug=TRUE))
# p0 and U0 from the methods document
p0 <- c(8, 4,0,6)/ 18
U0 <- rbind(c(1,0,0,0) - p0, 0, 0,
c(0,1,0,0) - p0, 0,
0,
c(1,0,0,0) - p0, 0, 0, 0,
c(0,0,0,1) - p0, 0,
0, 0) /18
aeq(mtest$pstate[1,], p0)
aeq(mtest$U[,,1], U0)
aeq(mtest$time[-1], mfit$time) # mtest includes U(2-eps) as 'time 0'
aeq(mtest$pstate[-1,], mfit$pstate)
aeq(mfit$p0, p0)
aeq(mfit$i0, rowsum(U0*tdata$wt, tdata$id))
# direct check that mtest has the correct answer
eps <- 1e-6
delta <- array(0, dim= c(nrow(tdata), dim(mfit$pstate)))
deltaC<- array(0, dim= c(nrow(tdata), dim(mfit$cumhaz)))
for (i in 1:nrow(tdata)) {
twt <- tdata$wt
twt[i] <- twt[i] + eps
tfit <- survfit(Surv(t1, t2, st) ~1, tdata, id=id, istate=i0,
weights= twt)
delta[i,,] <- (tfit$pstate - mfit$pstate)/eps
deltaC[i,,] <-(tfit$cumhaz - mfit$cumhaz)/eps
}
temp <- aperm(mtest$U, c(1,3,2)) # drop time 0, put state last
all.equal(temp[,-1,], delta, tol=eps/2)
tempC <-aperm(mtest$C, c(1,3,2))
all.equal(tempC[,-1,], deltaC, tol= eps/2)
# Now check mfit, which returns the weighted collapsed values
BD <- t(model.matrix(~ factor(id) -1, tdata)) %*% diag(tdata$wt)
rownames(BD) <- 1:6
collapse <- function(U, cmat=BD) {
# for each time point, replace the inflence matrix U with BDU
if (is.matrix(U)) BD %*% U
else {
dd <- dim(U)
temp <- cmat %*% matrix(U, nrow = dd[1]) #fake out matrix multiply
array(temp, dim= c(nrow(temp), dd[2:3]))
}
}
sqsum <- function(x) sqrt(sum(x^2))
temp <- collapse(mtest$U[,,-1]) # mtest has time 0, mfit does not
# mfit$influence is in id, time, state order
aeq(aperm(temp, c(1,3,2)), mfit$influence) # mtest has time 0, mfit does not
setemp <- apply(collapse(mtest$U[,,-1]), 2:3, sqsum)
aeq(t(setemp), mfit$std.err)
ctemp <- apply(collapse(mtest$C[,,-1]), 2:3, sqsum)
aeq(t(ctemp), mfit$std.chaz)
atemp <- apply(collapse(mtest$A[,,-1]), 2:3, sqsum)
aeq(t(atemp), mfit$std.auc)
# check residuals
rr1 <- resid(mfit, times=mfit$time, type='pstate')
aeq(rr1, mtest$U[,,-1])
rr2 <- resid(mfit, times=mfit$time, type='auc')
aeq(rr2, mtest$A[,,-1])