296 lines
10 KiB
R
296 lines
10 KiB
R
|
### R code from vignette source 'concordance.Rnw'
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 1: concordance.Rnw:23-32
|
||
|
###################################################
|
||
|
options(continue=" ", width=60)
|
||
|
options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1))))
|
||
|
pdf.options(pointsize=10) #text in graph about the same as regular text
|
||
|
options(contrasts=c("contr.treatment", "contr.poly")) #ensure default
|
||
|
|
||
|
#require("survival")
|
||
|
#library(survival)
|
||
|
library(survival)
|
||
|
library(splines)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 2: examples1a
|
||
|
###################################################
|
||
|
# x1 and y2 are both continuous variables
|
||
|
concordance(y2 ~ x1, data= anscombe)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 3: examples1b
|
||
|
###################################################
|
||
|
# Fisher's iris data
|
||
|
fit1 <- glm(Species=="versicolor" ~ ., family=binomial, data=iris)
|
||
|
concordance(fit1) # equivalent to an AUC
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 4: examples1c
|
||
|
###################################################
|
||
|
# Anscombe data (all variables are continuous)
|
||
|
fit2 <- lm(y2 ~ x1 + x4, data= anscombe)
|
||
|
concordance(fit2) # C
|
||
|
sqrt(summary(fit2)$r.squared) # R
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 5: examples1d
|
||
|
###################################################
|
||
|
# parametric survival
|
||
|
fit3 <- survreg(Surv(time, status) ~ karno + age + trt, data=veteran)
|
||
|
concordance(fit3)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 6: examples1e
|
||
|
###################################################
|
||
|
# 3 Cox models
|
||
|
fit4 <- coxph(Surv(time, status) ~ karno + age + trt, data=veteran)
|
||
|
fit5 <- update(fit4, . ~ . + celltype)
|
||
|
fit6 <- update(fit5, . ~ . + prior)
|
||
|
ctest <- concordance(fit4, fit5, fit6)
|
||
|
ctest
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 7: balance
|
||
|
###################################################
|
||
|
getOption("SweaveHooks")[["fig"]]()
|
||
|
# The balance figure for the concordance document
|
||
|
btree <- function(n) {
|
||
|
tfun <- function(n, id, power) {
|
||
|
if (n==1) id
|
||
|
else if (n==2) c(2*id, id)
|
||
|
else if (n==3) c(2*id, id, 2*id+1)
|
||
|
else {
|
||
|
nleft <- if (n== power*2) power else min(power-1, n-power/2)
|
||
|
c(tfun(nleft, 2*id, power/2), id,
|
||
|
tfun(n-(nleft+1), 2*id +1, power/2))
|
||
|
}
|
||
|
}
|
||
|
tfun(n, 1, 2^(floor(logb(n-1,2))))
|
||
|
}
|
||
|
|
||
|
temp <- c(1,2,6,8, 9,12,14, 18, 19, 21, 23, 24, 27 )
|
||
|
indx <- btree(13)
|
||
|
|
||
|
xpos <- 1:15
|
||
|
xpos[4:7] <- tapply(xpos[8:15], rep(1:4, each=2), mean)
|
||
|
xpos[2:3] <- tapply(xpos[4:7], rep(1:2, each=2),mean)
|
||
|
xpos[1] <- mean(xpos[2:3])
|
||
|
ypos <- rep(4:1, c(1,2,4,8))
|
||
|
|
||
|
oldpar <- par(mar=c(1,1,1,1))
|
||
|
|
||
|
plot(xpos, ypos, type='n', xaxt='n', yaxt='n', bty='n',
|
||
|
xlab="", ylab="")
|
||
|
temp2 <- c(13,7,5,3,3,3,1,1,1,1,1,1,1)
|
||
|
#text(xpos[indx], ypos[indx], paste(temp, " (", temp2[indx], ")", sep=''))
|
||
|
text(xpos[indx], ypos[indx], as.character(temp))
|
||
|
|
||
|
delta=.1
|
||
|
for (i in 1:6) {
|
||
|
segments(xpos[i]-delta, ypos[i]-delta,
|
||
|
xpos[2*i]+delta, ypos[2*i]+delta)
|
||
|
segments(xpos[i]+delta, ypos[i]-delta,
|
||
|
xpos[2*i+1]-delta, ypos[2*i+1] +delta)
|
||
|
}
|
||
|
par(oldpar)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 8: concordance.Rnw:311-316
|
||
|
###################################################
|
||
|
# Concordance for a coxph object
|
||
|
concordance(fit4)
|
||
|
|
||
|
# Concordance using predictions from a Cox model
|
||
|
concordance(Surv(time, status) ~ predict(fit4), data = veteran, reverse = TRUE)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 9: veteran2
|
||
|
###################################################
|
||
|
fit4b <- coxph(formula = Surv(time, status) ~ karno + age + trt +
|
||
|
strata(celltype), data = veteran)
|
||
|
concordance(fit4b)
|
||
|
table(veteran$celltype)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 10: amlexample
|
||
|
###################################################
|
||
|
afit <- survfit(Surv(time, status) ~1, aml, se = FALSE)
|
||
|
summary(afit, times = afit$time[1:6], censor = TRUE)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 11: tmwt
|
||
|
###################################################
|
||
|
getOption("SweaveHooks")[["fig"]]()
|
||
|
colonfit <- coxph(Surv(time, status) ~ rx + nodes + extent, data = colon,
|
||
|
subset = (etype == 2)) # death only
|
||
|
cord1 <- concordance(colonfit, timewt="n", ranks=TRUE)
|
||
|
cord2 <- concordance(colonfit, timewt="S", ranks=TRUE)
|
||
|
cord3 <- concordance(colonfit, timewt="S/G", ranks=TRUE)
|
||
|
cord4 <- concordance(colonfit, timewt="n/G2", ranks=TRUE)
|
||
|
temp <- c("n(t)"= coef(cord1), S=coef(cord2), "S/G"= coef(cord3),
|
||
|
"n/G2"= coef(cord4))
|
||
|
round(temp,5) # 4 different concordance estimates
|
||
|
|
||
|
# Plot the weights over time using the first 3 approaches
|
||
|
matplot(cord1$ranks$time/365.25, cbind(cord1$ranks$timewt,
|
||
|
cord2$ranks$timewt,
|
||
|
cord3$ranks$timewt),
|
||
|
type= "l", lwd=2, col=c(1,2,4),
|
||
|
xlab="Years since enrollment", ylab="Weight")
|
||
|
legend(1, 3000, c("n(t)", "nS(t-)", "nS(t-)/G(t-)"), lwd=2,
|
||
|
col=c(1,2,4), lty=1:3, bty="n")
|
||
|
|
||
|
# Note that n/G2 and S/G are identical
|
||
|
all.equal(cord3$ranks$timewt,cord4$ranks$timewt)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 12: manycurve
|
||
|
###################################################
|
||
|
getOption("SweaveHooks")[["fig"]]()
|
||
|
duo <- function(time, status, name, conf.int=FALSE) {
|
||
|
sfit <- survfit(Surv(time, status) ~1)
|
||
|
gfit <- survfit(Surv(time, max(status)-status) ~1)
|
||
|
plot(sfit, conf.int=conf.int, xlab=name, lwd=2)
|
||
|
lines(gfit, col=2, lwd=2, conf.int = conf.int)
|
||
|
}
|
||
|
oldpar <- par(mfrow=c(3,3), mar=c(5,5,1,1))
|
||
|
with(subset(colon, etype==1), duo(time/365.25, status, "NCCTG colon cancer"))
|
||
|
duo(flchain$futime/365.25, flchain$death, "Free light chain")
|
||
|
duo(kidney$time/12, kidney$status, "McGilchrist kidney")
|
||
|
duo(lung$time/365.25, lung$status, "advanced lung cancer")
|
||
|
duo(mgus2$futime/12, mgus2$death, "MGUS")
|
||
|
duo(nafld1$futime/365.25, nafld1$status, "NAFLD")
|
||
|
|
||
|
duo(pbc$time/365.25, pmin(pbc$status,1), "PBC")
|
||
|
with(rotterdam, duo(pmin(rtime, dtime)/365.25, pmax(recur, death), "Rotterdam"))
|
||
|
|
||
|
nfit <- coxph(Surv(futime/365.25, status) ~ age + male, data = nafld1)
|
||
|
znfit <- cox.zph(nfit, transform = 'identity')
|
||
|
plot(znfit[1], resid = FALSE)
|
||
|
par(oldpar)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 13: nafld1
|
||
|
###################################################
|
||
|
nfit <- coxph(Surv(futime/365.25, status) ~ age + male, data = nafld1)
|
||
|
ncord1 <- concordance(nfit, timewt = "n")
|
||
|
ncord2 <- concordance(nfit, timewt = "S")
|
||
|
ncord3 <- concordance(nfit, timewt = "S/G")
|
||
|
ncord4 <- concordance(nfit, timewt = "n/G2")
|
||
|
temp <- c(n = coef(ncord1), S = coef(ncord2),
|
||
|
"S/G" = coef(ncord3), "n/G2" = coef(ncord4))
|
||
|
round(temp,6)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 14: rankresid (eval = FALSE)
|
||
|
###################################################
|
||
|
## # code for Figure 3
|
||
|
## # pick a dataset with a smaller number of points, and non PH
|
||
|
## vfit <- coxph(Surv(time/365.25, status) ~ age + karno, data = veteran)
|
||
|
## temp <- concordance(vfit, ranks=TRUE)$rank
|
||
|
## # Two outliers at 999 days = 2.7 years stretch the axis too far
|
||
|
## plot(rank ~ time, data=temp, xlim=c(0,1.6),
|
||
|
## xlab="Years", ylab="Rank residual")
|
||
|
## lines(lowess(temp$time, temp$rank, iter=1), lwd=2, col=2)
|
||
|
## abline(0, 0, lty=3)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 15: rankresid2
|
||
|
###################################################
|
||
|
getOption("SweaveHooks")[["fig"]]()
|
||
|
# code for Figure 3
|
||
|
# pick a dataset with a smaller number of points, and non PH
|
||
|
vfit <- coxph(Surv(time/365.25, status) ~ age + karno, data = veteran)
|
||
|
temp <- concordance(vfit, ranks=TRUE)$rank
|
||
|
# Two outliers at 999 days = 2.7 years stretch the axis too far
|
||
|
plot(rank ~ time, data=temp, xlim=c(0,1.6),
|
||
|
xlab="Years", ylab="Rank residual")
|
||
|
lines(lowess(temp$time, temp$rank, iter=1), lwd=2, col=2)
|
||
|
abline(0, 0, lty=3)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 16: rotterdam (eval = FALSE)
|
||
|
###################################################
|
||
|
getOption("SweaveHooks")[["fig"]]()
|
||
|
## # should this be included?
|
||
|
## # recurrence free survival = earlier of recurrence and death
|
||
|
## rdata <- rotterdam
|
||
|
## rdata$rfs <- with(rdata, ifelse(recur==1, 1, death))
|
||
|
## rdata$rfstime <- with(rdata, ifelse(recur==1, rtime, dtime))/ 365.25
|
||
|
##
|
||
|
## rfit <- coxph(Surv(rfstime, rfs) ~ age + meno + grade + pspline(nodes), rdata)
|
||
|
## ctemp <- matrix(0, 100, 2) # concordance and std err
|
||
|
## ctime <- seq(.1, 10, length=100)
|
||
|
## for (i in 1:100) {
|
||
|
## temp <- concordance(rfit, ymax=ctime[i])
|
||
|
## ctemp[i,] <- c(temp$concordance, sqrt(temp$var))
|
||
|
## }
|
||
|
## yhat <- ctemp[,1] + outer(ctemp[,2], c(0, -1.96, 1.96), '*')
|
||
|
## matplot(ctime, yhat, type='l', lty=c(1,2,2), lwd=c(2,1,1), col=1,
|
||
|
## xlab="Upper cutoff", ylab="C", ylim=c(0.5,1))
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 17: test
|
||
|
###################################################
|
||
|
ctest <- concordance(fit4, fit5, fit6)
|
||
|
ctest
|
||
|
|
||
|
# compare concordance values of fit4 and fit5
|
||
|
contr <- c(-1, 1, 0)
|
||
|
dtest <- contr %*% coef(ctest)
|
||
|
dvar <- contr %*% vcov(ctest) %*% contr
|
||
|
|
||
|
c(contrast=dtest, sd=sqrt(dvar), z=dtest/sqrt(dvar))
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 18: Cztrans
|
||
|
###################################################
|
||
|
zci <- function(fit, p=.95) {
|
||
|
ilogist <- function(p) log(p/(1-p)) # inverse logistic
|
||
|
logistic <- function(x) exp(x)/(1 + exp(x))
|
||
|
temp <- concordance(fit, influence =1)
|
||
|
cminus <- temp$concordance - temp$dfbeta # values of concordance, without i
|
||
|
|
||
|
newd <- ilogist(temp$concordance) - ilogist(cminus) # dfbeta on new scale
|
||
|
new.sd <- sqrt(sum(newd^2))
|
||
|
old.sd <- sqrt(sum(temp$dfbeta^2)) # same as sqrt(temp$var)
|
||
|
|
||
|
z <- qnorm((1-p)/2)
|
||
|
old.ci <- temp$concordance + c(z, -z)*old.sd
|
||
|
new.ci <- logistic(ilogist(temp$concordance) + c(z, -z)* new.sd)
|
||
|
rbind(old = old.ci, new= new.ci)
|
||
|
}
|
||
|
|
||
|
round(zci(colonfit), 4)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 19: close
|
||
|
###################################################
|
||
|
set.seed(1953)
|
||
|
ytest <- matrix(rexp(20), ncol=2) %*% chol(matrix(c(1, .98, .98, 1), 2))
|
||
|
cor(ytest)
|
||
|
lfit <- lm(ytest[,1] ~ ytest[,2])
|
||
|
zci(lfit)
|
||
|
|
||
|
|