83 lines
3.0 KiB
R
83 lines
3.0 KiB
R
|
## Example in which the fit for the null deviance fails to converge:
|
||
|
# https://stat.ethz.ch/pipermail/r-help/2012-May/313161.html
|
||
|
Y <- c(rep(0,35),1,2,0,6,8,16,43)
|
||
|
beta <- 42:1
|
||
|
cst <- lchoose(42, beta)
|
||
|
tau <- (beta^2)/2
|
||
|
fit <- glm(formula = Y ~ offset(cst) + beta + tau, family = poisson)
|
||
|
|
||
|
## Ensure make.link() consistency:
|
||
|
linkNames <- c("logit", "probit", "cauchit", "cloglog",
|
||
|
"identity",
|
||
|
"log", "sqrt", "1/mu^2", "inverse")
|
||
|
links <- lapply(setNames(,linkNames), make.link)
|
||
|
fns <- c("linkfun", "linkinv", "mu.eta", "valideta")
|
||
|
stopifnot(exprs = {
|
||
|
is.matrix(nms <- sapply(links, names)) # matching number & type
|
||
|
is.character(nms)
|
||
|
nms[,1] == nms ## all columns are the same
|
||
|
identical(setNames(,linkNames), vapply(links, `[[`, "", "name"))
|
||
|
fns %in% nms[,1]
|
||
|
})
|
||
|
links <- lapply(links, `[`, fns) # functions only
|
||
|
stopifnot(unlist(lapply(links, function(L) vapply(L, is.function, NA))))
|
||
|
## all functions having consistent arguments :
|
||
|
lf <- lapply(links, function(L) lapply(L, formals))
|
||
|
stopifnot(exprs = { ## all functions have 1 argument
|
||
|
unlist(lapply(lf, lengths), recursive=FALSE) == 1L
|
||
|
is.matrix(argNms <- sapply(lf, function(L) vapply(L, names, "")))
|
||
|
argNms[,1] == argNms ## all columns are the same
|
||
|
})
|
||
|
noquote(t(argNms))
|
||
|
|
||
|
## Calling all functions
|
||
|
## 1. valideta
|
||
|
stopifnot(vv <- vapply(links, function(L) L$valideta((1:3)/4), NA))
|
||
|
## 2. all others
|
||
|
other <- fns != "valideta"
|
||
|
str(linkO <- lapply(links, function(L) L[other]))
|
||
|
v <- sapply(linkO, function(L) sapply(L, function(F) F((0:4)/4)),
|
||
|
simplify = "array")
|
||
|
stopifnot(exprs = {
|
||
|
is.numeric(v)
|
||
|
identical(dim(v), c(5L, sum(other), length(links)))
|
||
|
identical(dimnames(v)[[2]], fns[other])
|
||
|
## check that all functions are monotone (incr. _or_ decr.) <==>
|
||
|
## signs of differences are constant <==> var(*) == 0
|
||
|
apply(v, 2:3, function(f) var(sign(diff(f))) == 0)
|
||
|
})
|
||
|
|
||
|
## Could further check [for 'okLinks' of given families]:
|
||
|
## <family>( "<linkname>") ==
|
||
|
## <family>(make.link("<linkname>"))
|
||
|
|
||
|
|
||
|
## <family>$aic() vs logLik() vs AIC() -- for Gamma:
|
||
|
# From example(glm) :
|
||
|
clotting <- data.frame(
|
||
|
u = c( 5, 10,15,20,30,40,60,80,100),
|
||
|
lot1 = c(118,58,42,35,27,25,21,19,18),
|
||
|
lot2 = c(69, 35,26,21,18,16,13,12,12))
|
||
|
summary(fm1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma))
|
||
|
summary(fm2 <- glm(lot2 ~ log(u), data = clotting, family = Gamma))
|
||
|
|
||
|
hasDisp <- 1 # have dispersion (here, but not e.g., for binomial, poisson)
|
||
|
for(fm in list(fm1, fm2)) {
|
||
|
print(ll <- logLik(fm))
|
||
|
p <- attr(ll, "df")
|
||
|
A0 <- AIC(fm)
|
||
|
A1 <- -2*c(ll) + 2*p
|
||
|
aic.v <- fm$family$aic(y = fm$y, mu = fitted(fm),
|
||
|
wt = weights(fm), dev= deviance(fm))
|
||
|
stopifnot(p == (p. <- length(coef(fm))) + hasDisp,
|
||
|
all.equal(-2*c(ll) + 2*hasDisp, aic.v)) # <fam>$aic() = -2 * loglik + 2s
|
||
|
A2 <- aic.v + 2 * p.
|
||
|
stopifnot(exprs = {
|
||
|
all.equal(A0, A1)
|
||
|
all.equal(A1, A2)
|
||
|
all.equal(A1, fm$aic)
|
||
|
})
|
||
|
}
|
||
|
|
||
|
|