592 lines
2.4 MiB
HTML
Raw Normal View History

2025-01-12 00:52:51 +08:00
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Bob Rudis, Noam Ross and Simon Garnier" />
<meta name="date" content="2024-01-28" />
<title>Introduction to the viridis color maps</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Introduction to the viridis color maps</h1>
<h4 class="author">Bob Rudis, Noam Ross and Simon Garnier</h4>
<h4 class="date">2024-01-28</h4>
<div id="TOC">
<ul>
<li><a href="#tldr" id="toc-tldr">tl;dr</a></li>
<li><a href="#introduction" id="toc-introduction">Introduction</a></li>
<li><a href="#the-color-scales" id="toc-the-color-scales">The Color
Scales</a></li>
<li><a href="#comparison" id="toc-comparison">Comparison</a></li>
<li><a href="#usage" id="toc-usage">Usage</a></li>
<li><a href="#gallery" id="toc-gallery">Gallery</a></li>
</ul>
</div>
<style>
img {
max-width: 100%;
max-height: 100%;
}
</style>
<div id="tldr" class="section level1">
<h1>tl;dr</h1>
<p>Use the color scales in this package to make plots that are pretty,
better represent your data, easier to read by those with colorblindness,
and print well in gray scale.</p>
<p>Install <strong>viridis</strong> like any R package:</p>
<pre><code>install.packages(&quot;viridis&quot;)
library(viridis)</code></pre>
<p>For base plots, use the <code>viridis()</code> function to generate a
palette:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>x <span class="ot">&lt;-</span> y <span class="ot">&lt;-</span> <span class="fu">seq</span>(<span class="sc">-</span><span class="dv">8</span><span class="sc">*</span>pi, <span class="dv">8</span><span class="sc">*</span>pi, <span class="at">len =</span> <span class="dv">40</span>)</span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a>r <span class="ot">&lt;-</span> <span class="fu">sqrt</span>(<span class="fu">outer</span>(x<span class="sc">^</span><span class="dv">2</span>, y<span class="sc">^</span><span class="dv">2</span>, <span class="st">&quot;+&quot;</span>))</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a><span class="fu">filled.contour</span>(<span class="fu">cos</span>(r<span class="sc">^</span><span class="dv">2</span>)<span class="sc">*</span><span class="fu">exp</span>(<span class="sc">-</span>r<span class="sc">/</span>(<span class="dv">2</span><span class="sc">*</span>pi)), </span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a> <span class="at">axes=</span><span class="cn">FALSE</span>,</span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a> <span class="at">color.palette=</span>viridis,</span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a> <span class="at">asp=</span><span class="dv">1</span>)</span></code></pre></div>
<p><img src="
<p>For ggplot, use <code>scale_color_viridis()</code> and
<code>scale_fill_viridis()</code>:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="fu">ggplot</span>(<span class="fu">data.frame</span>(<span class="at">x =</span> <span class="fu">rnorm</span>(<span class="dv">10000</span>), <span class="at">y =</span> <span class="fu">rnorm</span>(<span class="dv">10000</span>)), <span class="fu">aes</span>(<span class="at">x =</span> x, <span class="at">y =</span> y)) <span class="sc">+</span></span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a> <span class="fu">geom_hex</span>() <span class="sc">+</span> <span class="fu">coord_fixed</span>() <span class="sc">+</span></span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a> <span class="fu">scale_fill_viridis</span>() <span class="sc">+</span> <span class="fu">theme_bw</span>()</span></code></pre></div>
<p><img src="
<hr />
</div>
<div id="introduction" class="section level1">
<h1>Introduction</h1>
<p><a href="https://cran.r-project.org/package=viridis"><code>viridis</code></a>,
and its companion package <a href="https://cran.r-project.org/package=viridisLite"><code>viridisLite</code></a>
provide a series of color maps that are designed to improve graph
readability for readers with common forms of color blindness and/or
color vision deficiency. The color maps are also perceptually-uniform,
both in regular form and also when converted to black-and-white for
printing.</p>
<p>These color maps are designed to be:</p>
<ul>
<li><strong>Colorful</strong>, spanning as wide a palette as possible so
as to make differences easy to see,</li>
<li><strong>Perceptually uniform</strong>, meaning that values close to
each other have similar-appearing colors and values far away from each
other have more different-appearing colors, consistently across the
range of values,</li>
<li><strong>Robust to colorblindness</strong>, so that the above
properties hold true for people with common forms of colorblindness, as
well as in grey scale printing, and</li>
<li><strong>Pretty</strong>, oh so pretty</li>
</ul>
<p><code>viridisLite</code> provides the base functions for generating
the color maps in base <code>R</code>. The package is meant to be as
lightweight and dependency-free as possible for maximum compatibility
with all the <code>R</code> ecosystem. <a href="https://cran.r-project.org/package=viridis"><code>viridis</code></a>
provides additional functionalities, in particular bindings for
<code>ggplot2</code>.</p>
<hr />
</div>
<div id="the-color-scales" class="section level1">
<h1>The Color Scales</h1>
<p>The package contains eight color scales: “viridis”, the primary
choice, and five alternatives with similar properties - “magma”,
“plasma”, “inferno”, “civids”, “mako”, and “rocket” -, and a rainbow
color map - “turbo”.</p>
<p>The color maps <code>viridis</code>, <code>magma</code>,
<code>inferno</code>, and <code>plasma</code> were created by Stéfan van
der Walt (<a href="https://github.com/stefanv"><span class="citation">@stefanv</span></a>) and Nathaniel Smith (<a href="https://github.com/njsmith"><span class="citation">@njsmith</span></a>). If you want to know more about
the science behind the creation of these color maps, you can watch this
<a href="https://youtu.be/xAoljeRJ3lU">presentation of
<code>viridis</code></a> by their authors at SciPy 2015.</p>
<p>The color map <code>cividis</code> is a corrected version of
viridis, developed by Jamie R. Nuñez, Christopher R. Anderton, and
Ryan S. Renslow, and originally ported to <code>R</code> by Marco
Sciaini (<a href="https://github.com/marcosci"><span class="citation">@msciain</span></a>). More info about
<code>cividis</code> can be found in <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199239">this
paper</a>.</p>
<p>The color maps <code>mako</code> and <code>rocket</code> were
originally created for the <code>Seaborn</code> statistical data
visualization package for Python. More info about <code>mako</code> and
<code>rocket</code> can be found on the <a href="https://seaborn.pydata.org/tutorial/color_palettes.html"><code>Seaborn</code>
website</a>.</p>
<p>The color map <code>turbo</code> was developed by Anton Mikhailov to
address the shortcomings of the Jet rainbow color map such as false
detail, banding and color blindness ambiguity. More infor about
<code>turbo</code> can be found <a href="https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html">here</a>.</p>
<p><img src="
<hr />
</div>
<div id="comparison" class="section level1">
<h1>Comparison</h1>
<p>Lets compare the viridis and magma scales against these other
commonly used sequential color palettes in R:</p>
<ul>
<li>Base R palettes: <code>rainbow.colors</code>,
<code>heat.colors</code>, <code>cm.colors</code></li>
<li>The default <strong>ggplot2</strong> palette</li>
<li>Sequential <a href="https://colorbrewer2.org/">colorbrewer</a>
palettes, both default blues and the more viridis-like
yellow-green-blue</li>
</ul>
<p><img src="
<p>It is immediately clear that the “rainbow” palette is not
perceptually uniform; there are several “kinks” where the apparent color
changes quickly over a short range of values. This is also true, though
less so, for the “heat” colors. The other scales are more perceptually
uniform, but “viridis” stands out for its large <em>perceptual
range</em>. It makes as much use of the available color space as
possible while maintaining uniformity.</p>
<p>Now, lets compare these as they might appear under various forms of
colorblindness, which can be simulated using the <strong><a href="https://cran.r-project.org/package=dichromat">dichromat</a></strong>
package:</p>
<div id="green-blind-deuteranopia" class="section level3">
<h3>Green-Blind (Deuteranopia)</h3>
<p><img src="
</div>
<div id="red-blind-protanopia" class="section level3">
<h3>Red-Blind (Protanopia)</h3>
<p><img src="
</div>
<div id="blue-blind-tritanopia" class="section level3">
<h3>Blue-Blind (Tritanopia)</h3>
<p><img src="
</div>
<div id="desaturated" class="section level3">
<h3>Desaturated</h3>
<p><img src="
<p>We can see that in these cases, “rainbow” is quite problematic - it
is not perceptually consistent across its range. “Heat” washes out at
bright colors, as do the brewer scales to a lesser extent. The ggplot
scale does not wash out, but it has a low perceptual range - theres not
much contrast between low and high values. The “viridis” and “magma”
scales do better - they cover a wide perceptual range in brightness in
brightness and blue-yellow, and do not rely as much on red-green
contrast. They do less well under tritanopia (blue-blindness), but this
is an extrememly rare form of colorblindness.</p>
<hr />
</div>
</div>
<div id="usage" class="section level1">
<h1>Usage</h1>
<p>The <code>viridis()</code> function produces the <code>viridis</code>
color scale. You can choose the other color scale options using the
<code>option</code> parameter or the convenience functions
<code>magma()</code>, <code>plasma()</code>, <code>inferno()</code>,
<code>cividis()</code>, <code>mako()</code>,
<code>rocket</code>()<code>, and</code>turbo()`.</p>
<p>Here the <code>inferno()</code> scale is used for a raster of U.S.
max temperature:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">library</span>(terra)</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a><span class="fu">library</span>(httr)</span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="fu">par</span>(<span class="at">mfrow=</span><span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">1</span>), <span class="at">mar=</span><span class="fu">rep</span>(<span class="fl">0.5</span>, <span class="dv">4</span>))</span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a>temp_raster <span class="ot">&lt;-</span> <span class="st">&quot;http://ftp.cpc.ncep.noaa.gov/GIS/GRADS_GIS/GeoTIFF/TEMP/us_tmax/us.tmax_nohads_ll_20150219_float.tif&quot;</span></span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a><span class="fu">try</span>(<span class="fu">GET</span>(temp_raster,</span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a> <span class="fu">write_disk</span>(<span class="st">&quot;us.tmax_nohads_ll_20150219_float.tif&quot;</span>)), <span class="at">silent=</span><span class="cn">TRUE</span>)</span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a>us <span class="ot">&lt;-</span> <span class="fu">rast</span>(<span class="st">&quot;us.tmax_nohads_ll_20150219_float.tif&quot;</span>)</span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a>us <span class="ot">&lt;-</span> <span class="fu">project</span>(us, <span class="at">y=</span><span class="st">&quot;+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs&quot;</span>)</span>
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a><span class="fu">image</span>(us, <span class="at">col=</span><span class="fu">inferno</span>(<span class="dv">256</span>), <span class="at">asp=</span><span class="dv">1</span>, <span class="at">axes=</span><span class="cn">FALSE</span>, <span class="at">xaxs=</span><span class="st">&quot;i&quot;</span>, <span class="at">xaxt=</span><span class="st">&#39;n&#39;</span>, <span class="at">yaxt=</span><span class="st">&#39;n&#39;</span>, <span class="at">ann=</span><span class="cn">FALSE</span>)</span></code></pre></div>
<p><img src="
<p>The package also contains color scale functions for
<strong>ggplot</strong> plots: <code>scale_color_viridis()</code> and
<code>scale_fill_viridis()</code>. As with <code>viridis()</code>, you
can use the other scales with the <code>option</code> argument in the
<code>ggplot</code> scales.<br />
Here the “magma” scale is used for a cloropleth map of U.S.
unemployment:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">library</span>(maps)</span></code></pre></div>
<pre><code>##
## Attaching package: &#39;maps&#39;</code></pre>
<pre><code>## The following object is masked from &#39;package:viridis&#39;:
##
## unemp</code></pre>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">library</span>(mapproj)</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a></span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a><span class="fu">data</span>(unemp, <span class="at">package =</span> <span class="st">&quot;viridis&quot;</span>)</span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a></span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a>county_df <span class="ot">&lt;-</span> <span class="fu">map_data</span>(<span class="st">&quot;county&quot;</span>, <span class="at">projection =</span> <span class="st">&quot;albers&quot;</span>, <span class="at">parameters =</span> <span class="fu">c</span>(<span class="dv">39</span>, <span class="dv">45</span>))</span>
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a><span class="fu">names</span>(county_df) <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">&quot;long&quot;</span>, <span class="st">&quot;lat&quot;</span>, <span class="st">&quot;group&quot;</span>, <span class="st">&quot;order&quot;</span>, <span class="st">&quot;state_name&quot;</span>, <span class="st">&quot;county&quot;</span>)</span>
<span id="cb8-7"><a href="#cb8-7" tabindex="-1"></a>county_df<span class="sc">$</span>state <span class="ot">&lt;-</span> state.abb[<span class="fu">match</span>(county_df<span class="sc">$</span>state_name, <span class="fu">tolower</span>(state.name))]</span>
<span id="cb8-8"><a href="#cb8-8" tabindex="-1"></a>county_df<span class="sc">$</span>state_name <span class="ot">&lt;-</span> <span class="cn">NULL</span></span>
<span id="cb8-9"><a href="#cb8-9" tabindex="-1"></a></span>
<span id="cb8-10"><a href="#cb8-10" tabindex="-1"></a>state_df <span class="ot">&lt;-</span> <span class="fu">map_data</span>(<span class="st">&quot;state&quot;</span>, <span class="at">projection =</span> <span class="st">&quot;albers&quot;</span>, <span class="at">parameters =</span> <span class="fu">c</span>(<span class="dv">39</span>, <span class="dv">45</span>))</span>
<span id="cb8-11"><a href="#cb8-11" tabindex="-1"></a></span>
<span id="cb8-12"><a href="#cb8-12" tabindex="-1"></a>choropleth <span class="ot">&lt;-</span> <span class="fu">merge</span>(county_df, unemp, <span class="at">by =</span> <span class="fu">c</span>(<span class="st">&quot;state&quot;</span>, <span class="st">&quot;county&quot;</span>))</span>
<span id="cb8-13"><a href="#cb8-13" tabindex="-1"></a>choropleth <span class="ot">&lt;-</span> choropleth[<span class="fu">order</span>(choropleth<span class="sc">$</span>order), ]</span>
<span id="cb8-14"><a href="#cb8-14" tabindex="-1"></a></span>
<span id="cb8-15"><a href="#cb8-15" tabindex="-1"></a><span class="fu">ggplot</span>(choropleth, <span class="fu">aes</span>(long, lat, <span class="at">group =</span> group)) <span class="sc">+</span></span>
<span id="cb8-16"><a href="#cb8-16" tabindex="-1"></a> <span class="fu">geom_polygon</span>(<span class="fu">aes</span>(<span class="at">fill =</span> rate), <span class="at">colour =</span> <span class="fu">alpha</span>(<span class="st">&quot;white&quot;</span>, <span class="dv">1</span> <span class="sc">/</span> <span class="dv">2</span>), <span class="at">linewidth =</span> <span class="fl">0.2</span>) <span class="sc">+</span></span>
<span id="cb8-17"><a href="#cb8-17" tabindex="-1"></a> <span class="fu">geom_polygon</span>(<span class="at">data =</span> state_df, <span class="at">colour =</span> <span class="st">&quot;white&quot;</span>, <span class="at">fill =</span> <span class="cn">NA</span>) <span class="sc">+</span></span>
<span id="cb8-18"><a href="#cb8-18" tabindex="-1"></a> <span class="fu">coord_fixed</span>() <span class="sc">+</span></span>
<span id="cb8-19"><a href="#cb8-19" tabindex="-1"></a> <span class="fu">theme_minimal</span>() <span class="sc">+</span></span>
<span id="cb8-20"><a href="#cb8-20" tabindex="-1"></a> <span class="fu">ggtitle</span>(<span class="st">&quot;US unemployment rate by county&quot;</span>) <span class="sc">+</span></span>
<span id="cb8-21"><a href="#cb8-21" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">axis.line =</span> <span class="fu">element_blank</span>(), <span class="at">axis.text =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb8-22"><a href="#cb8-22" tabindex="-1"></a> <span class="at">axis.ticks =</span> <span class="fu">element_blank</span>(), <span class="at">axis.title =</span> <span class="fu">element_blank</span>()) <span class="sc">+</span></span>
<span id="cb8-23"><a href="#cb8-23" tabindex="-1"></a> <span class="fu">scale_fill_viridis</span>(<span class="at">option=</span><span class="st">&quot;magma&quot;</span>)</span></code></pre></div>
<p><img src="
<p>The ggplot functions also can be used for discrete scales with the
argument <code>discrete=TRUE</code>.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a>p <span class="ot">&lt;-</span> <span class="fu">ggplot</span>(mtcars, <span class="fu">aes</span>(wt, mpg))</span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>p <span class="sc">+</span> <span class="fu">geom_point</span>(<span class="at">size=</span><span class="dv">4</span>, <span class="fu">aes</span>(<span class="at">colour =</span> <span class="fu">factor</span>(cyl))) <span class="sc">+</span></span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a> <span class="fu">scale_color_viridis</span>(<span class="at">discrete=</span><span class="cn">TRUE</span>) <span class="sc">+</span></span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a> <span class="fu">theme_bw</span>()</span></code></pre></div>
<p><img src="
</div>
<div id="gallery" class="section level1">
<h1>Gallery</h1>
<p>Here are some examples of viridis being used in the wild:</p>
<p>James Curley uses <strong>viridis</strong> for matrix plots (<a href="https://gist.github.com/jalapic/9a1c069aa8cee4089c1e">Code</a>):</p>
<p><a href="http://pbs.twimg.com/media/CQWw9EgWsAAoUi0.png"><img src="
<p>Christopher Moore created these contour plots of potential in a
dynamic plankton-consumer model:</p>
<p><a href="http://pbs.twimg.com/media/CQWTy7wWcAAa-gu.jpg"><img src="
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>