57 lines
1.6 KiB
R
Raw Normal View History

2025-01-12 00:52:51 +08:00
options(na.action=na.exclude) # preserve missings
options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
library(survival)
#
# Test some more features of surv.diff
#
# First, what happens when one group is a dummy
#
#
# The AML data, with a third group of early censorings "tacked on"
#
aml3 <- list(time= c( 9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161,
5, 5, 8, 8, 12, 16, 23, 27, 30, 33, 43, 45,
1, 2, 2, 3, 3, 3, 4),
status= c( 1,1,0,1,1,0,1,1,0,1,0, 1,1,1,1,1,0,1,1,1,1,1,1,
0,0,0,0,0,0,0),
x = as.factor(c(rep("Maintained", 11),
rep("Nonmaintained", 12), rep("Dummy",7) )))
aml3 <- data.frame(aml3)
# These should give the same result (chisq, df), but the second has an
# extra group
survdiff(Surv(time, status) ~x, aml)
survdiff(Surv(time, status) ~x, aml3)
#
# Now a test of the stratified log-rank
# There are no tied times within institution, so the coxph program
# can be used to give a complete test
#
fit <- survdiff(Surv(time, status) ~ pat.karno + strata(inst), lung)
cfit <- coxph(Surv(time, status) ~ factor(pat.karno) + strata(inst),
lung, iter=0)
tdata <- na.omit(lung[,c('time', 'status', 'pat.karno', 'inst')])
temp1 <- tapply(tdata$status-1, list(tdata$pat.karno, tdata$inst), sum)
temp1 <- ifelse(is.na(temp1), 0, temp1)
temp2 <- tapply(cfit$resid, list(tdata$pat.karno, tdata$inst), sum)
temp2 <- ifelse(is.na(temp2), 0, temp2)
temp2 <- temp1 - temp2
#Now temp1=observed, temp2=expected
all.equal(c(temp1), c(fit$obs))
all.equal(c(temp2), c(fit$exp))
all.equal(fit$var[-1,-1], solve(cfit$var))
rm(tdata, temp1, temp2)