231 lines
7.2 KiB
Plaintext
231 lines
7.2 KiB
Plaintext
|
|
||
|
R Under development (unstable) (2024-04-17 r86441) -- "Unsuffered Consequences"
|
||
|
Copyright (C) 2024 The R Foundation for Statistical Computing
|
||
|
Platform: aarch64-unknown-linux-gnu
|
||
|
|
||
|
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
||
|
You are welcome to redistribute it under certain conditions.
|
||
|
Type 'license()' or 'licence()' for distribution details.
|
||
|
|
||
|
R is a collaborative project with many contributors.
|
||
|
Type 'contributors()' for more information and
|
||
|
'citation()' on how to cite R or R packages in publications.
|
||
|
|
||
|
Type 'demo()' for some demos, 'help()' for on-line help, or
|
||
|
'help.start()' for an HTML browser interface to help.
|
||
|
Type 'q()' to quit R.
|
||
|
|
||
|
> library(survival)
|
||
|
> options(na.action=na.exclude) # preserve missings
|
||
|
> options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
|
||
|
> aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
|
||
|
>
|
||
|
> #
|
||
|
> # Tests from the appendix of Therneau and Grambsch
|
||
|
> # a. Data set 1 and Breslow estimate
|
||
|
> # The data below is not in time order, to also test sorting, and has 1 NA
|
||
|
> #
|
||
|
> test1 <- data.frame(time= c(9, 3,1,1,6,6,8),
|
||
|
+ status=c(1,NA,1,0,1,1,0),
|
||
|
+ x= c(0, 2,1,1,1,0,0))
|
||
|
>
|
||
|
> # Nelson-Aalen influence
|
||
|
> s1 <- survfit(Surv(time, status) ~1, test1, id=1:7, influence=TRUE)
|
||
|
> inf1 <- matrix(c(10, rep(-2,5), 10, -2, 7,7, -11, -11)/72,
|
||
|
+ ncol=2)
|
||
|
> indx <- order(test1$time[!is.na(test1$status)])
|
||
|
> aeq(s1$influence.chaz[indx,], inf1[,c(1,2,2,2)])
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> # KM influence
|
||
|
> inf2 <- matrix(c(-20, rep(4,5), -10, 2, -13, -13, 17, 17,
|
||
|
+ rep(0,6))/144, ncol=3)
|
||
|
> aeq(s1$influence.surv[indx,], inf2[, c(1,2,2,3)])
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> # Fleming-Harrington influence
|
||
|
> s2 <- survfit(Surv(time, status) ~ 1, test1, id=1:7, ctype=2, influence=2)
|
||
|
> inf3 <- matrix(c( rep(c(5, -1), c(1, 5))/36, c(5,-1)/36,
|
||
|
+ c(21,21,-29, -29)/144), ncol=2)
|
||
|
> aeq(s2$influence.chaz[indx,], inf3[,c(1,2,2,2)])
|
||
|
[1] TRUE
|
||
|
>
|
||
|
>
|
||
|
> # Breslow estimate
|
||
|
> byhand1 <- function(beta, newx=0) {
|
||
|
+ r <- exp(beta)
|
||
|
+ loglik <- 2*beta - (log(3*r+3) + 2*log(r+3))
|
||
|
+ u <- (6 + 3*r - r^2) / ((r+1)*(r+3))
|
||
|
+ imat <- r/(r+1)^2 + 6*r/(r+3)^2
|
||
|
+
|
||
|
+ x <- c(1,1,1,0,0,0)
|
||
|
+ status <- c(1,0,1,1,0,1)
|
||
|
+ xbar <- c(r/(r+1), r/(r+3), 0, 0) # at times 1, 6, 8 and 9
|
||
|
+ haz <- c(1/(3*r+3), 2/(r+3), 0, 1 )
|
||
|
+ ties <- c(1,1,2,2,3,4)
|
||
|
+ wt <- c(r,r,r,1,1,1)
|
||
|
+ mart <- c(1,0,1,1,0,1) - wt* (cumsum(haz))[ties] #martingale residual
|
||
|
+
|
||
|
+ a <- 3*(r+1)^2; b<- (r+3)^2
|
||
|
+ score <- c((2*r+3)/a, -r/a, -r/a + 3*(3-r)/b, r/a - r*(r+1)/b,
|
||
|
+ r/a + 2*r/b, r/a + 2*r/b)
|
||
|
+
|
||
|
+ # Schoenfeld residual
|
||
|
+ scho <- c(1/(r+1), 1- (r/(3+r)), 0-(r/(3+r)) , 0)
|
||
|
+
|
||
|
+ surv <- exp(-cumsum(haz)* exp(beta*newx))
|
||
|
+ varhaz.g <- cumsum(c(1/(3*r+3)^2, 2/(r+3)^2, 0, 1 ))
|
||
|
+
|
||
|
+ varhaz.d <- cumsum((newx-xbar) * haz)
|
||
|
+
|
||
|
+ varhaz <- (varhaz.g + varhaz.d^2/ imat) * exp(2*beta*newx)
|
||
|
+
|
||
|
+ names(xbar) <- names(haz) <- 1:4
|
||
|
+ names(surv) <- names(varhaz) <- 1:4
|
||
|
+ list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=haz,
|
||
|
+ mart=mart, score=score,
|
||
|
+ scho=scho, surv=surv, var=varhaz,
|
||
|
+ varhaz.g=varhaz.g, varhaz.d=varhaz.d)
|
||
|
+ }
|
||
|
>
|
||
|
>
|
||
|
>
|
||
|
> fit0 <-coxph(Surv(time, status) ~x, test1, iter=0, method='breslow')
|
||
|
> truth0 <- byhand1(0,0)
|
||
|
> aeq(truth0$loglik, fit0$loglik[1])
|
||
|
[1] TRUE
|
||
|
> aeq(1/truth0$imat, fit0$var)
|
||
|
[1] TRUE
|
||
|
> aeq(truth0$mart, fit0$residuals[c(2:6,1)])
|
||
|
[1] TRUE
|
||
|
> aeq(truth0$scho, resid(fit0, 'schoen'))
|
||
|
[1] TRUE
|
||
|
> aeq(truth0$score, resid(fit0, 'score')[c(3:7,1)])
|
||
|
[1] TRUE
|
||
|
> sfit <- survfit(fit0, list(x=0))
|
||
|
> aeq(sfit$cumhaz, cumsum(truth0$haz))
|
||
|
[1] TRUE
|
||
|
> aeq(sfit$surv, exp(-cumsum(truth0$haz)))
|
||
|
[1] TRUE
|
||
|
> aeq(sfit$std.err^2, c(7/180, 2/9, 2/9, 11/9))
|
||
|
[1] TRUE
|
||
|
> aeq(resid(fit0, 'score'), c(5/24, NA, 5/12, -1/12, 7/24, -1/24, 5/24))
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> fit1 <- coxph(Surv(time, status) ~x, test1, iter=1, method='breslow')
|
||
|
> aeq(fit1$coefficients, 8/5)
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> # This next gives an ignorable warning message
|
||
|
> fit2 <- coxph(Surv(time, status) ~x, test1, method='breslow', iter=2)
|
||
|
Warning message:
|
||
|
In coxph.fit(X, Y, istrat, offset, init, control, weights = weights, :
|
||
|
Ran out of iterations and did not converge
|
||
|
> aeq(round(fit2$coefficients, 6), 1.472724)
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> fit <- coxph(Surv(time, status) ~x, test1, method='breslow', eps=1e-8,
|
||
|
+ nocenter=NULL)
|
||
|
> aeq(fit$coefficients, log(1.5 + sqrt(33)/2)) # the true solution
|
||
|
[1] TRUE
|
||
|
> truth <- byhand1(fit$coefficients, 0)
|
||
|
> aeq(truth$loglik, fit$loglik[2])
|
||
|
[1] TRUE
|
||
|
> aeq(1/truth$imat, fit$var)
|
||
|
[1] TRUE
|
||
|
> aeq(truth$mart, fit$residuals[c(2:6,1)])
|
||
|
[1] TRUE
|
||
|
> aeq(truth$scho, resid(fit, 'schoen'))
|
||
|
[1] TRUE
|
||
|
> aeq(truth$score, resid(fit, 'score')[c(3:7,1)])
|
||
|
[1] TRUE
|
||
|
> expect <- predict(fit, type='expected', newdata=test1) #force recalc
|
||
|
> aeq(test1$status[-2] -fit$residuals, expect[-2]) #tests the predict function
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> sfit <- survfit(fit, list(x=0), censor=FALSE)
|
||
|
> aeq(sfit$std.err^2, truth$var[c(1,2,4)]) # sfit skips time 8 (no events there)
|
||
|
[1] TRUE
|
||
|
> aeq(-log(sfit$surv), (cumsum(truth$haz))[c(1,2,4)])
|
||
|
[1] TRUE
|
||
|
> sfit <- survfit(fit, list(x=0), censor=TRUE)
|
||
|
> aeq(sfit$std.err^2, truth$var)
|
||
|
[1] TRUE
|
||
|
> aeq(-log(sfit$surv), (cumsum(truth$haz)))
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> #
|
||
|
> # Done with the formal test, now print out lots of bits
|
||
|
> #
|
||
|
> resid(fit)
|
||
|
1 2 3 4 5 6 7
|
||
|
-0.3333333 NA 0.7287136 -0.2712864 -0.4574271 0.6666667 -0.3333333
|
||
|
> resid(fit, 'scor')
|
||
|
1 2 3 4 5 6
|
||
|
0.21138938 NA 0.13564322 -0.05049744 -0.12624360 -0.38168095
|
||
|
7
|
||
|
0.21138938
|
||
|
> resid(fit, 'scho')
|
||
|
1 6 6 9
|
||
|
0.1861407 0.4069297 -0.5930703 0.0000000
|
||
|
>
|
||
|
> predict(fit, type='lp', se.fit=T)
|
||
|
$fit
|
||
|
1 2 3 4 5 6 7
|
||
|
-0.7376425 NA 0.7376425 0.7376425 0.7376425 -0.7376425 -0.7376425
|
||
|
|
||
|
$se.fit
|
||
|
1 2 3 4 5 6 7
|
||
|
0.6278672 NA 0.6278672 0.6278672 0.6278672 0.6278672 0.6278672
|
||
|
|
||
|
> predict(fit, type='risk', se.fit=T)
|
||
|
$fit
|
||
|
1 2 3 4 5 6 7
|
||
|
0.4782401 NA 2.0910001 2.0910001 2.0910001 0.4782401 0.4782401
|
||
|
|
||
|
$se.fit
|
||
|
1 2 3 4 5 6 7
|
||
|
0.4342009 NA 0.9079142 0.9079142 0.9079142 0.4342009 0.4342009
|
||
|
|
||
|
> predict(fit, type='expected', se.fit=T)
|
||
|
$fit
|
||
|
1 2 3 4 5 6 7
|
||
|
1.3333333 NA 0.2712864 0.2712864 1.4574271 0.3333333 0.3333333
|
||
|
|
||
|
$se.fit
|
||
|
[1] 1.0540926 NA 0.2785989 0.2785989 1.1069433 0.3333333 0.3333333
|
||
|
|
||
|
> predict(fit, type='terms', se.fit=T)
|
||
|
$fit
|
||
|
x
|
||
|
1 -0.7376425
|
||
|
2 NA
|
||
|
3 0.7376425
|
||
|
4 0.7376425
|
||
|
5 0.7376425
|
||
|
6 -0.7376425
|
||
|
7 -0.7376425
|
||
|
|
||
|
$se.fit
|
||
|
x
|
||
|
1 0.6278672
|
||
|
2 NA
|
||
|
3 0.6278672
|
||
|
4 0.6278672
|
||
|
5 0.6278672
|
||
|
6 0.6278672
|
||
|
7 0.6278672
|
||
|
|
||
|
>
|
||
|
> summary(survfit(fit, list(x=2)))
|
||
|
Call: survfit(formula = fit, newdata = list(x = 2))
|
||
|
|
||
|
time n.risk n.event survival std.err lower 95% CI upper 95% CI
|
||
|
1 6 1 3.05e-01 6.50e-01 4.72e-03 1
|
||
|
6 4 2 1.71e-03 1.98e-02 2.33e-13 1
|
||
|
9 1 1 8.52e-12 5.29e-10 1.22e-64 1
|
||
|
>
|
||
|
> proc.time()
|
||
|
user system elapsed
|
||
|
0.454 0.004 0.455
|