515 lines
12 KiB
Plaintext
515 lines
12 KiB
Plaintext
|
|
|||
|
R Under development (unstable) (2013-02-09 r61878) -- "Unsuffered Consequences"
|
|||
|
Copyright (C) 2013 The R Foundation for Statistical Computing
|
|||
|
ISBN 3-900051-07-0
|
|||
|
Platform: x86_64-unknown-linux-gnu (64-bit)
|
|||
|
|
|||
|
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
|||
|
You are welcome to redistribute it under certain conditions.
|
|||
|
Type 'license()' or 'licence()' for distribution details.
|
|||
|
|
|||
|
Natural language support but running in an English locale
|
|||
|
|
|||
|
R is a collaborative project with many contributors.
|
|||
|
Type 'contributors()' for more information and
|
|||
|
'citation()' on how to cite R or R packages in publications.
|
|||
|
|
|||
|
Type 'demo()' for some demos, 'help()' for on-line help, or
|
|||
|
'help.start()' for an HTML browser interface to help.
|
|||
|
Type 'q()' to quit R.
|
|||
|
|
|||
|
> pkgname <- "spatial"
|
|||
|
> source(file.path(R.home("share"), "R", "examples-header.R"))
|
|||
|
> options(warn = 1)
|
|||
|
> library('spatial')
|
|||
|
>
|
|||
|
> base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
|
|||
|
> cleanEx()
|
|||
|
> nameEx("Kaver")
|
|||
|
> ### * Kaver
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: Kaver
|
|||
|
> ### Title: Average K-functions from Simulations
|
|||
|
> ### Aliases: Kaver
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> towns <- ppinit("towns.dat")
|
|||
|
> par(pty="s")
|
|||
|
> plot(Kfn(towns, 40), type="b")
|
|||
|
> plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
|
|||
|
> for(i in 1:10) lines(Kfn(Psim(69), 10))
|
|||
|
> lims <- Kenvl(10,100,Psim(69))
|
|||
|
> lines(lims$x,lims$lower, lty=2, col="green")
|
|||
|
> lines(lims$x,lims$upper, lty=2, col="green")
|
|||
|
> lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
|||
|
> cleanEx()
|
|||
|
> nameEx("Kenvl")
|
|||
|
> ### * Kenvl
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: Kenvl
|
|||
|
> ### Title: Compute Envelope and Average of Simulations of K-fns
|
|||
|
> ### Aliases: Kenvl
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> towns <- ppinit("towns.dat")
|
|||
|
> par(pty="s")
|
|||
|
> plot(Kfn(towns, 40), type="b")
|
|||
|
> plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
|
|||
|
> for(i in 1:10) lines(Kfn(Psim(69), 10))
|
|||
|
> lims <- Kenvl(10,100,Psim(69))
|
|||
|
> lines(lims$x,lims$lower, lty=2, col="green")
|
|||
|
> lines(lims$x,lims$upper, lty=2, col="green")
|
|||
|
> lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
|||
|
> cleanEx()
|
|||
|
> nameEx("Kfn")
|
|||
|
> ### * Kfn
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: Kfn
|
|||
|
> ### Title: Compute K-fn of a Point Pattern
|
|||
|
> ### Aliases: Kfn
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> towns <- ppinit("towns.dat")
|
|||
|
> par(pty="s")
|
|||
|
> plot(Kfn(towns, 10), type="s", xlab="distance", ylab="L(t)")
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
|||
|
> cleanEx()
|
|||
|
> nameEx("Psim")
|
|||
|
> ### * Psim
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: Psim
|
|||
|
> ### Title: Simulate Binomial Spatial Point Process
|
|||
|
> ### Aliases: Psim
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> towns <- ppinit("towns.dat")
|
|||
|
> par(pty="s")
|
|||
|
> plot(Kfn(towns, 10), type="s", xlab="distance", ylab="L(t)")
|
|||
|
> for(i in 1:10) lines(Kfn(Psim(69), 10))
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
|||
|
> cleanEx()
|
|||
|
> nameEx("SSI")
|
|||
|
> ### * SSI
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: SSI
|
|||
|
> ### Title: Simulates Sequential Spatial Inhibition Point Process
|
|||
|
> ### Aliases: SSI
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> towns <- ppinit("towns.dat")
|
|||
|
> par(pty = "s")
|
|||
|
> plot(Kfn(towns, 10), type = "b", xlab = "distance", ylab = "L(t)")
|
|||
|
> lines(Kaver(10, 25, SSI(69, 1.2)))
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
|||
|
> cleanEx()
|
|||
|
> nameEx("Strauss")
|
|||
|
> ### * Strauss
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: Strauss
|
|||
|
> ### Title: Simulates Strauss Spatial Point Process
|
|||
|
> ### Aliases: Strauss
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> towns <- ppinit("towns.dat")
|
|||
|
> par(pty="s")
|
|||
|
> plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
|
|||
|
> lines(Kaver(10, 25, Strauss(69,0.5,3.5)))
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
|||
|
> cleanEx()
|
|||
|
> nameEx("anova.trls")
|
|||
|
> ### * anova.trls
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: anova.trls
|
|||
|
> ### Title: Anova tables for fitted trend surface objects
|
|||
|
> ### Aliases: anova.trls anovalist.trls
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> library(stats)
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo0 <- surf.ls(0, topo)
|
|||
|
> topo1 <- surf.ls(1, topo)
|
|||
|
> topo2 <- surf.ls(2, topo)
|
|||
|
> topo3 <- surf.ls(3, topo)
|
|||
|
> topo4 <- surf.ls(4, topo)
|
|||
|
> anova(topo0, topo1, topo2, topo3, topo4)
|
|||
|
Analysis of Variance Table
|
|||
|
|
|||
|
Model 1: surf.ls(np = 0, x = topo)
|
|||
|
Model 2: surf.ls(np = 1, x = topo)
|
|||
|
Model 3: surf.ls(np = 2, x = topo)
|
|||
|
Model 4: surf.ls(np = 3, x = topo)
|
|||
|
Model 5: surf.ls(np = 4, x = topo)
|
|||
|
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
|
|||
|
1 51 196030
|
|||
|
2 49 67186 2 128844 46.9843 4.040e-12
|
|||
|
3 46 39958 3 27228 10.4482 2.325e-05
|
|||
|
4 42 21577 4 18381 8.9447 2.558e-05
|
|||
|
5 37 14886 5 6691 3.3265 0.014
|
|||
|
> summary(topo4)
|
|||
|
Analysis of Variance Table
|
|||
|
Model: surf.ls(np = 4, x = topo)
|
|||
|
Sum Sq Df Mean Sq F value Pr(>F)
|
|||
|
Regression 181144.0 14 12938.8567 32.16092 2.2204e-16
|
|||
|
Deviation 14885.7 37 402.3162
|
|||
|
Total 196029.7 51
|
|||
|
Multiple R-Squared: 0.9241, Adjusted R-squared: 0.8953
|
|||
|
AIC: (df = 15) 324.1594
|
|||
|
Fitted:
|
|||
|
Min 1Q Median 3Q Max
|
|||
|
702.1 785.0 836.3 880.5 939.1
|
|||
|
Residuals:
|
|||
|
Min 1Q Median 3Q Max
|
|||
|
-34.077 -12.568 -2.085 14.056 50.161
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
> nameEx("correlogram")
|
|||
|
> ### * correlogram
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: correlogram
|
|||
|
> ### Title: Compute Spatial Correlograms
|
|||
|
> ### Aliases: correlogram
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo.kr <- surf.ls(2, topo)
|
|||
|
> correlogram(topo.kr, 25)
|
|||
|
> d <- seq(0, 7, 0.1)
|
|||
|
> lines(d, expcov(d, 0.7))
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
> nameEx("expcov")
|
|||
|
> ### * expcov
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: expcov
|
|||
|
> ### Title: Spatial Covariance Functions
|
|||
|
> ### Aliases: expcov gaucov sphercov
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo.kr <- surf.ls(2, topo)
|
|||
|
> correlogram(topo.kr, 25)
|
|||
|
> d <- seq(0, 7, 0.1)
|
|||
|
> lines(d, expcov(d, 0.7))
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
> nameEx("ppinit")
|
|||
|
> ### * ppinit
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: ppinit
|
|||
|
> ### Title: Read a Point Process Object from a File
|
|||
|
> ### Aliases: ppinit
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> towns <- ppinit("towns.dat")
|
|||
|
> par(pty="s")
|
|||
|
> plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
|||
|
> cleanEx()
|
|||
|
> nameEx("pplik")
|
|||
|
> ### * pplik
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: pplik
|
|||
|
> ### Title: Pseudo-likelihood Estimation of a Strauss Spatial Point Process
|
|||
|
> ### Aliases: pplik
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> pines <- ppinit("pines.dat")
|
|||
|
> pplik(pines, 0.7)
|
|||
|
[1] 0.1508756
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
> nameEx("predict.trls")
|
|||
|
> ### * predict.trls
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: predict.trls
|
|||
|
> ### Title: Predict method for trend surface fits
|
|||
|
> ### Aliases: predict.trls
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo2 <- surf.ls(2, topo)
|
|||
|
> topo4 <- surf.ls(4, topo)
|
|||
|
> x <- c(1.78, 2.21)
|
|||
|
> y <- c(6.15, 6.15)
|
|||
|
> z2 <- predict(topo2, x, y)
|
|||
|
> z4 <- predict(topo4, x, y)
|
|||
|
> cat("2nd order predictions:", z2, "\n4th order predictions:", z4, "\n")
|
|||
|
2nd order predictions: 756.0682 747.0624
|
|||
|
4th order predictions: 765.5547 742.3738
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
> nameEx("prmat")
|
|||
|
> ### * prmat
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: prmat
|
|||
|
> ### Title: Evaluate Kriging Surface over a Grid
|
|||
|
> ### Aliases: prmat
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo.kr <- surf.gls(2, expcov, topo, d=0.7)
|
|||
|
> prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
|
|||
|
> contour(prsurf, levels=seq(700, 925, 25))
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
> nameEx("semat")
|
|||
|
> ### * semat
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: semat
|
|||
|
> ### Title: Evaluate Kriging Standard Error of Prediction over a Grid
|
|||
|
> ### Aliases: semat
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo.kr <- surf.gls(2, expcov, topo, d=0.7)
|
|||
|
> prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
|
|||
|
> contour(prsurf, levels=seq(700, 925, 25))
|
|||
|
> sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
|
|||
|
> contour(sesurf, levels=c(22,25))
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
> nameEx("surf.gls")
|
|||
|
> ### * surf.gls
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: surf.gls
|
|||
|
> ### Title: Fits a Trend Surface by Generalized Least-squares
|
|||
|
> ### Aliases: surf.gls
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> library(MASS) # for eqscplot
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo.kr <- surf.gls(2, expcov, topo, d=0.7)
|
|||
|
> trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
|
|||
|
> eqscplot(trsurf, type = "n")
|
|||
|
> contour(trsurf, add = TRUE)
|
|||
|
>
|
|||
|
> prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
|
|||
|
> contour(prsurf, levels=seq(700, 925, 25))
|
|||
|
> sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
|
|||
|
> eqscplot(sesurf, type = "n")
|
|||
|
> contour(sesurf, levels = c(22, 25), add = TRUE)
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
|
|||
|
detaching ‘package:MASS’
|
|||
|
|
|||
|
> nameEx("surf.ls")
|
|||
|
> ### * surf.ls
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: surf.ls
|
|||
|
> ### Title: Fits a Trend Surface by Least-squares
|
|||
|
> ### Aliases: surf.ls
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> library(MASS) # for eqscplot
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo.kr <- surf.ls(2, topo)
|
|||
|
> trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
|
|||
|
> eqscplot(trsurf, type = "n")
|
|||
|
> contour(trsurf, add = TRUE)
|
|||
|
> points(topo)
|
|||
|
>
|
|||
|
> eqscplot(trsurf, type = "n")
|
|||
|
> contour(trsurf, add = TRUE)
|
|||
|
> plot(topo.kr, add = TRUE)
|
|||
|
> title(xlab= "Circle radius proportional to Cook's influence statistic")
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
|
|||
|
detaching ‘package:MASS’
|
|||
|
|
|||
|
> nameEx("trls.influence")
|
|||
|
> ### * trls.influence
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: trls.influence
|
|||
|
> ### Title: Regression diagnostics for trend surfaces
|
|||
|
> ### Aliases: trls.influence plot.trls
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> library(MASS) # for eqscplot
|
|||
|
> data(topo, package = "MASS")
|
|||
|
> topo2 <- surf.ls(2, topo)
|
|||
|
> infl.topo2 <- trls.influence(topo2)
|
|||
|
> (cand <- as.data.frame(infl.topo2)[abs(infl.topo2$stresid) > 1.5, ])
|
|||
|
r hii stresid Di
|
|||
|
1 61.21889 0.35476783 2.585852 0.61275133
|
|||
|
4 -45.58507 0.13493260 -1.662930 0.07188916
|
|||
|
12 44.71663 0.21022336 1.707234 0.12930392
|
|||
|
31 52.05575 0.07154233 1.833006 0.04314966
|
|||
|
37 54.75944 0.06974770 1.926349 0.04637112
|
|||
|
48 97.75499 0.08574061 3.468809 0.18807312
|
|||
|
50 -63.25149 0.27530059 -2.520972 0.40237779
|
|||
|
> cand.xy <- topo[as.integer(rownames(cand)), c("x", "y")]
|
|||
|
> trsurf <- trmat(topo2, 0, 6.5, 0, 6.5, 50)
|
|||
|
> eqscplot(trsurf, type = "n")
|
|||
|
> contour(trsurf, add = TRUE, col = "grey")
|
|||
|
> plot(topo2, add = TRUE, div = 3)
|
|||
|
> points(cand.xy, pch = 16, col = "orange")
|
|||
|
> text(cand.xy, labels = rownames(cand.xy), pos = 4, offset = 0.5)
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
|
|||
|
detaching ‘package:MASS’
|
|||
|
|
|||
|
> nameEx("trmat")
|
|||
|
> ### * trmat
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: trmat
|
|||
|
> ### Title: Evaluate Trend Surface over a Grid
|
|||
|
> ### Aliases: trmat
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo.kr <- surf.ls(2, topo)
|
|||
|
> trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> cleanEx()
|
|||
|
> nameEx("variogram")
|
|||
|
> ### * variogram
|
|||
|
>
|
|||
|
> flush(stderr()); flush(stdout())
|
|||
|
>
|
|||
|
> ### Name: variogram
|
|||
|
> ### Title: Compute Spatial Variogram
|
|||
|
> ### Aliases: variogram
|
|||
|
> ### Keywords: spatial
|
|||
|
>
|
|||
|
> ### ** Examples
|
|||
|
>
|
|||
|
> data(topo, package="MASS")
|
|||
|
> topo.kr <- surf.ls(2, topo)
|
|||
|
> variogram(topo.kr, 25)
|
|||
|
>
|
|||
|
>
|
|||
|
>
|
|||
|
> ### * <FOOTER>
|
|||
|
> ###
|
|||
|
> base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
|
|||
|
Time elapsed: 0.713 0.036 0.776 0 0
|
|||
|
> grDevices::dev.off()
|
|||
|
null device
|
|||
|
1
|
|||
|
> ###
|
|||
|
> ### Local variables: ***
|
|||
|
> ### mode: outline-minor ***
|
|||
|
> ### outline-regexp: "\\(> \\)?### [*]+" ***
|
|||
|
> ### End: ***
|
|||
|
> quit('no')
|