73 lines
2.4 KiB
R
73 lines
2.4 KiB
R
|
#
|
||
|
# A hard-core test of losses and priors
|
||
|
# Simple data set where I know what the answers must be
|
||
|
#
|
||
|
library(rpart)
|
||
|
aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...)
|
||
|
|
||
|
dummy <- c(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9)/5
|
||
|
pdata <- data.frame(y=factor(rep(1:3, 5)),
|
||
|
x1 = 1:15,
|
||
|
x2 = c(1:6, 1:6, 1:3),
|
||
|
x3 = (rep(1:3, 5) + dummy)*10)
|
||
|
|
||
|
pdata$x3[c(1,5,10)] <- NA
|
||
|
pdata$y[15] <- 1 # make things unbalanced
|
||
|
|
||
|
set.seed(10)
|
||
|
pfit <- rpart(y ~ x1 + x2 + x3, pdata,
|
||
|
cp=0, xval=0, minsplit=5, maxdepth=1,
|
||
|
parms=list(prior=c(.2, .3, .5),
|
||
|
loss =matrix(c(0,2,2,2,0,6,1,1,0), 3,3,byrow=T)))
|
||
|
|
||
|
#
|
||
|
# See section 12.1 of the report for these numbers
|
||
|
#
|
||
|
|
||
|
ntot <- c(6,5,4)
|
||
|
phat <- c(6,5,4)/15 # observed class probabilities
|
||
|
prior <- c(.2, .3, .5) # priors
|
||
|
aprior <- c(4,12,5)/21 # altered priors
|
||
|
lmat <- matrix(c(0,1,2, 2,0,1, 2,6,0), ncol=3) #loss matrix
|
||
|
|
||
|
gini <- function(p) 1-sum(p^2)
|
||
|
loss <- function(n, class) sum(n * lmat[,class])
|
||
|
|
||
|
phat <- function(n, ntot=c(6,5,4), prior=c(.2, .3, .5)) {
|
||
|
n*prior/ntot
|
||
|
}
|
||
|
|
||
|
# Are the losses correct?
|
||
|
# Class counts for the two children are (4,4,0) and (2,1,4), when
|
||
|
# using surrogates
|
||
|
aeq(pfit$frame$dev/15, c(loss(prior,2), loss(phat(c(4,4,0)),2),
|
||
|
loss(phat(c(2,1,4)),3)))
|
||
|
# Node probabilities?
|
||
|
aeq(pfit$frame$yval2[,8] ,
|
||
|
c(1, sum(phat(c(4,4,0))), sum(phat(c(2,1,4)))))
|
||
|
|
||
|
aeq(pfit$frame$yval2[,5:7] , rbind(prior,
|
||
|
phat(c(4,4,0))/ sum(phat(c(4,4,0))),
|
||
|
phat(c(2,1,4))/ sum(phat(c(2,1,4)))))
|
||
|
|
||
|
# Now the node and class probs, under altered priors
|
||
|
phat2 <- function(n, ntot=c(6,5,4), prior=aprior) {
|
||
|
n*prior/ntot
|
||
|
}
|
||
|
|
||
|
# Use these to create the gini losses, base data, and for the best
|
||
|
# splits on variables 1, 2, 3
|
||
|
gfun <- function(n) { #The gini loss for a node, given the counts
|
||
|
temp <- phat2(n)
|
||
|
sum(temp) * gini(temp/sum(temp))
|
||
|
}
|
||
|
|
||
|
# These are in order x3, x2, x1 (best split to worst)
|
||
|
# Note that for x3, missing values cause the "parent" to be viewed as
|
||
|
# having 12 obs instead of 15.
|
||
|
# Each line is gini(parent) - gini(children)
|
||
|
aeq(pfit$splits[1:3, 3],
|
||
|
15* c(gfun(c(4,4,4)) - (gfun(c(3,4,0)) + gfun(c(1,0,4))),
|
||
|
gfun(c(6,5,4)) - (gfun(c(6,5,2)) + gfun(c(0,0,2))),
|
||
|
gfun(c(6,5,4)) - (gfun(c(4,4,4)) + gfun(c(2,1,0)))))
|