865 lines
34 KiB
R
865 lines
34 KiB
R
|
## ----echo = FALSE, message = FALSE--------------------------------------------
|
||
|
library(dendextend)
|
||
|
library(knitr)
|
||
|
knitr::opts_chunk$set(
|
||
|
cache = TRUE,
|
||
|
dpi = 75,
|
||
|
fig.width = 6, fig.height = 6,
|
||
|
comment = "#>",
|
||
|
tidy = FALSE)
|
||
|
|
||
|
# https://stackoverflow.com/questions/24091735/why-pandoc-does-not-retrieve-the-image-file
|
||
|
# < ! -- rmarkdown v1 -->
|
||
|
|
||
|
|
||
|
## ----echo=FALSE, warning=FALSE, fig.align='center', fig.width=7, fig.height=7----
|
||
|
suppressMessages(library(dendextend))
|
||
|
library(colorspace)
|
||
|
|
||
|
dend1 <- c(1:5) %>% # take some data
|
||
|
dist %>% # calculate a distance matrix,
|
||
|
hclust(method = "average") %>% # on it compute hierarchical clustering using the "average" method,
|
||
|
as.dendrogram # and lastly, turn that object into a dendrogram.
|
||
|
dend2 <- c(1:5) %>% # take some data
|
||
|
dist %>% # calculate a distance matrix,
|
||
|
hclust(method = "single") %>% # on it compute hierarchical clustering using the "average" method,
|
||
|
as.dendrogram # and lastly, turn that object into a dendrogram.
|
||
|
dend1 <- rotate(dend1, order = c(as.character(5:1)))
|
||
|
labels(dend1) <- rev(c("dendextend", "let's u easily", "control","(and compare) your", "dendrograms"))
|
||
|
labels(dend2) <- rev(c("let's u easily","dendextend" ,"control","(and compare) your", "dendrograms"))
|
||
|
dend1 <- dend1 %>%
|
||
|
color_labels %>%
|
||
|
set("labels_cex", c(2.2,1.4)) %>%
|
||
|
set("branches_lwd", c(4,1,4)) %>%
|
||
|
set("branches_lty", c(1,2,1)) %>%
|
||
|
set("nodes_pch", c(NA,19,NA)) %>%
|
||
|
set("nodes_cex", c(NA,2.5,NA)) %>%
|
||
|
set("nodes_col", c(NA,3,NA)) %>%
|
||
|
hang.dendrogram # %>% plot
|
||
|
dend2 <- color_branches(dend2)
|
||
|
# dend2 <- color_labels(dend2)
|
||
|
tanglegram(dendlist(dend1, dend2), margin_inner = 9,
|
||
|
color_lines = c(rep("darkgreen", 3) , rep("darkred",2)),
|
||
|
sub= paste("Entanglement:", round(entanglement(dendlist(dend1, dend2)),2)), cex_sub = 1.5
|
||
|
)
|
||
|
|
||
|
# dend2 %>% color_branches %>% plot
|
||
|
# dend2 %>% color_branches(k=3) %>% plot # nice, returns the tree as is...
|
||
|
# dend2 %>% color_labels %>% plot
|
||
|
# cutree(dend2,3)
|
||
|
|
||
|
|
||
|
|
||
|
## ----echo=FALSE---------------------------------------------------------------
|
||
|
|
||
|
c(person("Tal", "Galili", role = c("aut", "cre", "cph"), email =
|
||
|
"tal.galili@gmail.com", comment = "https://www.r-statistics.com"),
|
||
|
person("Gavin", "Simpson", role = "ctb"), person("Gregory","Jefferis", role
|
||
|
= "ctb", email = "jefferis@gmail.com",
|
||
|
comment ="imported code from his dendroextras package"),
|
||
|
person("Marco", "Gallotta", role = "ctb", comment =
|
||
|
"a.k.a: marcog") , person("Johan", "Renaudie", role = "ctb", comment =
|
||
|
"https://github.com/plannapus"), person("R core team", role = "ctb",
|
||
|
comment = "Thanks for the Infastructure, and code in the examples"),
|
||
|
person("Kurt", "Hornik", role = "ctb"), person("Uwe", "Ligges",
|
||
|
role = "ctb"), person("Andrej-Nikolai", "Spiess", role = "ctb"),
|
||
|
person("Steve", "Horvath",email = "SHorvath@mednet.ucla.edu", role =
|
||
|
"ctb"), person("Peter", "Langfelder",email = "Peter.Langfelder@gmail.com",
|
||
|
role = "ctb"), person("skullkey", role = "ctb"), person("Mark",
|
||
|
"Van Der Loo", email = "mark.vanderloo@gmail.com", comment =
|
||
|
"https://github.com/markvanderloo d3dendrogram", role = "ctb"),
|
||
|
person("Yoav", "Benjamini", role = "ths"))
|
||
|
|
||
|
|
||
|
## ----eval = FALSE-------------------------------------------------------------
|
||
|
# d1 <- c(1:5) # some data
|
||
|
# d2 <- dist(d1)
|
||
|
# d3 <- hclust(d2, method = "average")
|
||
|
# dend <- as.dendrogram(d3)
|
||
|
|
||
|
## ----eval=FALSE---------------------------------------------------------------
|
||
|
# dend <- as.dendrogram(hclust(dist(c(1:5)), method = "average"))
|
||
|
|
||
|
## ----eval = FALSE-------------------------------------------------------------
|
||
|
# dend <- c(1:5) %>% # take the a vector from 1 to 5
|
||
|
# dist %>% # calculate a distance matrix,
|
||
|
# hclust(method = "average") %>% # on it compute hierarchical clustering using the "average" method,
|
||
|
# as.dendrogram # and lastly, turn that object into a dendrogram.
|
||
|
|
||
|
## ----fig.width=4, fig.height=3------------------------------------------------
|
||
|
# Create a dend:
|
||
|
dend <- 1:2 %>% dist %>% hclust %>% as.dendrogram
|
||
|
# and plot it:
|
||
|
dend %>% plot
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
dend %>% unclass %>% str
|
||
|
dend %>% class
|
||
|
|
||
|
## ----fig.width=4, fig.height=3------------------------------------------------
|
||
|
# Create a dend:
|
||
|
dend <- 1:5 %>% dist %>% hclust %>% as.dendrogram
|
||
|
# Plot it:
|
||
|
dend %>% plot
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
dend %>% labels # get the labels of the tree
|
||
|
dend %>% nleaves # get the number of leaves of the tree
|
||
|
dend %>% nnodes # get the number of nodes in the tree (including leaves)
|
||
|
dend %>% head # A combination of "str" with "head"
|
||
|
|
||
|
## ----echo=FALSE, fig.height=5-------------------------------------------------
|
||
|
# Create a dend:
|
||
|
dend <- 1:5 %>% dist %>% hclust %>% as.dendrogram
|
||
|
|
||
|
# get_nodes_xy(dend)
|
||
|
# polygon(get_nodes_xy(dend), col = 2)
|
||
|
plot(dend,
|
||
|
leaflab = "none", # axes = FALSE, # no labels or y axis
|
||
|
main = "Nodes order when using \nDepth-first search in a dendrogram")
|
||
|
xy <- get_nodes_xy(dend)
|
||
|
for(i in 1:(nrow(xy)-1)) {
|
||
|
arrows(xy[i,1], xy[i,2], angle = 17,
|
||
|
length = .3,
|
||
|
xy[i+1,1], xy[i+1,2],
|
||
|
lty = 1, col = 3, lwd = 1.5)
|
||
|
}
|
||
|
points(xy, pch = 19, cex = 3)
|
||
|
text(xy, labels = 1:nnodes(dend),cex = 1.2, col = "white") #, adj = c(0.4,0.4))
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
# Create a dend:
|
||
|
dend <- 1:5 %>% dist %>% hclust %>% as.dendrogram
|
||
|
# Get various attributes
|
||
|
dend %>% get_nodes_attr("height") # node's height
|
||
|
dend %>% hang.dendrogram %>% get_nodes_attr("height") # node's height (after raising the leaves)
|
||
|
dend %>% get_nodes_attr("members") # number of members (leaves) under that node
|
||
|
dend %>% get_nodes_attr("members", id = c(2,5)) # number of members for nodes 2 and 5
|
||
|
dend %>% get_nodes_attr("midpoint") # how much "left" is this node from its left-most child's location
|
||
|
dend %>% get_nodes_attr("leaf") # is this node a leaf
|
||
|
dend %>% get_nodes_attr("label") # what is the label on this node
|
||
|
dend %>% get_nodes_attr("nodePar") # empty (for now...)
|
||
|
dend %>% get_nodes_attr("edgePar") # empty (for now...)
|
||
|
|
||
|
## ----fig.show='hold', fig.width=8, fig.height=3-------------------------------
|
||
|
dend13 <- c(1:3) %>% # take some data
|
||
|
dist %>% # calculate a distance matrix,
|
||
|
hclust(method = "average") %>% # on it compute hierarchical clustering using the "average" method,
|
||
|
as.dendrogram # and lastly, turn that object into a dendrogram.
|
||
|
# same, but for 5 leaves:
|
||
|
dend15 <- c(1:5) %>% dist %>% hclust(method = "average") %>% as.dendrogram
|
||
|
|
||
|
par(mfrow = c(1,2))
|
||
|
dend13 %>% plot(main="dend13")
|
||
|
dend15 %>% plot(main="dend15")
|
||
|
# we could have also used plot(dend)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
# get the labels:
|
||
|
dend15 %>% labels
|
||
|
# this is just like labels(dend)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
# change the labels, and then print them:
|
||
|
dend15 %>% set("labels", c(111:115)) %>% labels
|
||
|
# could also be done using:
|
||
|
# labels(dend) <- c(111:115)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
dend15 %>% labels
|
||
|
dend15 %>% set("labels_to_char") %>% labels
|
||
|
|
||
|
## ----fig.width=8, fig.height=3------------------------------------------------
|
||
|
par(mfrow = c(1,2))
|
||
|
dend15 %>% set("labels_col", "blue") %>% plot(main = "Change label's color") # change color
|
||
|
dend15 %>% set("labels_cex", 2) %>% plot(main = "Change label's size") # change color
|
||
|
|
||
|
## ----fig.width=8, fig.height=3------------------------------------------------
|
||
|
# Produce a more complex dendrogram:
|
||
|
dend15_2 <- dend15 %>%
|
||
|
set("labels", c(111:115)) %>% # change labels
|
||
|
set("labels_col", c(1,2,3)) %>% # change color
|
||
|
set("labels_cex", c(2,1)) # change size
|
||
|
|
||
|
par(mfrow = c(1,2))
|
||
|
dend15 %>% plot(main = "Before")
|
||
|
dend15_2 %>% plot(main = "After")
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
# looking at only the left-most node of the "after tree":
|
||
|
dend15_2[[1]][[1]] %>% unclass %>% str
|
||
|
# looking at only the nodePar attributes in this sub-tree:
|
||
|
dend15_2[[1]][[1]] %>% get_nodes_attr("nodePar")
|
||
|
|
||
|
## ----fig.width=8, fig.height=3------------------------------------------------
|
||
|
par(mfrow = c(1,2))
|
||
|
dend15 %>% set("labels_cex", 2) %>% set("labels_col", value = c(3,4)) %>%
|
||
|
plot(main = "Recycles color \nfrom left to right")
|
||
|
dend15 %>% set("labels_cex", 2) %>% set("labels_col", value = c(3,4), k=2) %>%
|
||
|
plot(main = "Color labels \nper cluster")
|
||
|
abline(h = 2, lty = 2)
|
||
|
|
||
|
## ----fig.width=10, fig.height=6-----------------------------------------------
|
||
|
par(mfrow = c(2,3))
|
||
|
dend13 %>% set("nodes_pch", 19) %>% plot(main = "(1) Show the\n nodes (as a dot)") #1
|
||
|
dend13 %>% set("nodes_pch", 19) %>% set("nodes_cex", 2) %>%
|
||
|
plot(main = "(2) Show (larger)\n nodes") #2
|
||
|
dend13 %>% set("nodes_pch", 19) %>% set("nodes_cex", 2) %>% set("nodes_col", 3) %>%
|
||
|
plot(main = "(3) Show (larger+colored)\n nodes") #3
|
||
|
|
||
|
dend13 %>% set("leaves_pch", 21) %>% plot(main = "(4) Show the leaves\n (as empty circles)") #4
|
||
|
dend13 %>% set("leaves_pch", 21) %>% set("leaves_cex", 2) %>%
|
||
|
plot(main = "(5) Show (larger)\n leaf circles") #5
|
||
|
dend13 %>%
|
||
|
set("leaves_pch", 21) %>%
|
||
|
set("leaves_bg", "gold") %>%
|
||
|
set("leaves_cex", 2) %>%
|
||
|
set("leaves_col", "darkred") %>%
|
||
|
plot(main = "(6) Show (larger+colored+filled)\n leaves") #6
|
||
|
|
||
|
|
||
|
## ----fig.width=8, fig.height=4------------------------------------------------
|
||
|
par(mfrow = c(1,2))
|
||
|
dend15 %>% set("nodes_pch", c(19,1,4)) %>% set("nodes_cex", c(2,1,2)) %>% set("nodes_col", c(3,4)) %>%
|
||
|
plot(main = "Adjust nodes")
|
||
|
dend15 %>% set("leaves_pch", c(19,1,4)) %>% set("leaves_cex", c(2,1,2)) %>% set("leaves_col", c(3,4)) %>%
|
||
|
plot(main = "Adjust nodes\n(but only for leaves)")
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
dend15 %>% set("nodes_pch", c(19,1,4)) %>%
|
||
|
set("nodes_cex", c(2,1,2)) %>% set("nodes_col", c(3,4)) %>% get_nodes_attr("nodePar")
|
||
|
|
||
|
## ----fig.width=10, fig.height=3-----------------------------------------------
|
||
|
par(mfrow = c(1,3))
|
||
|
dend13 %>% set("leaves_pch", 19) %>% set("leaves_cex", 2) %>% set("leaves_col", 2) %>% # adjust the leaves
|
||
|
hang.dendrogram %>% # hang the leaves
|
||
|
plot(main = "Hanging a tree")
|
||
|
dend13 %>% set("leaves_pch", 19) %>% set("leaves_cex", 2) %>% set("leaves_col", 2) %>% # adjust the leaves
|
||
|
hang.dendrogram(hang_height = .6) %>% # hang the leaves (at some height)
|
||
|
plot(main = "Hanging a tree (but lower)")
|
||
|
dend13 %>% set("leaves_pch", 19) %>% set("leaves_cex", 2) %>% set("leaves_col", 2) %>% # adjust the leaves
|
||
|
hang.dendrogram %>% # hang the leaves
|
||
|
hang.dendrogram(hang = -1) %>% # un-hanging the leaves
|
||
|
plot(main = "Not hanging a tree")
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
dend13 %>% get_leaves_attr("height")
|
||
|
dend13 %>% hang.dendrogram %>% get_leaves_attr("height")
|
||
|
|
||
|
## ----fig.width=10, fig.height=3-----------------------------------------------
|
||
|
par(mfrow = c(1,3))
|
||
|
dend13 %>% plot(main = "First tree", ylim = c(0,3))
|
||
|
dend13 %>%
|
||
|
raise.dendrogram (-1) %>%
|
||
|
plot(main = "One point lower", ylim = c(0,3))
|
||
|
dend13 %>%
|
||
|
raise.dendrogram (1) %>%
|
||
|
plot(main = "One point higher", ylim = c(0,3))
|
||
|
|
||
|
## ----fig.width=10, fig.height=3-----------------------------------------------
|
||
|
par(mfrow = c(1,3))
|
||
|
dend13 %>% set("branches_lwd", 4) %>% plot(main = "Thick branches")
|
||
|
dend13 %>% set("branches_lty", 3) %>% plot(main = "Dashed branches")
|
||
|
dend13 %>% set("branches_col", 2) %>% plot(main = "Red branches")
|
||
|
|
||
|
## ----fig.width=4, fig.height=3------------------------------------------------
|
||
|
# Produce a more complex dendrogram:
|
||
|
dend15 %>%
|
||
|
set("branches_lwd", c(4,1)) %>%
|
||
|
set("branches_lty", c(1,1,3)) %>%
|
||
|
set("branches_col", c(1,2,3)) %>%
|
||
|
plot(main = "Complex branches", edge.root = TRUE)
|
||
|
|
||
|
## ----fig.width=8, fig.height=3------------------------------------------------
|
||
|
par(mfrow = c(1,2))
|
||
|
dend15 %>% set("branches_k_color", k = 3) %>% plot(main = "Nice defaults")
|
||
|
dend15 %>% set("branches_k_color", value = 3:1, k = 3) %>%
|
||
|
plot(main = "Controlling branches' colors\n(via clustering)")
|
||
|
# This is like using the `color_branches` function
|
||
|
|
||
|
## ----fig.width=8, fig.height=3------------------------------------------------
|
||
|
par(mfrow = c(1,2))
|
||
|
dend15 %>% set("by_labels_branches_col", value = c(1,4)) %>%
|
||
|
plot(main = "Adjust the branch\n if ALL (default) of its\n labels are in the list")
|
||
|
dend15 %>% set("by_labels_branches_col", value = c(1,4), type = "any") %>%
|
||
|
plot(main = "Adjust the branch\n if ANY of its\n labels are in the list")
|
||
|
|
||
|
## ----fig.width=10, fig.height=3-----------------------------------------------
|
||
|
# Using "Inf" in "TF_values" means to let the parameters stay as they are.
|
||
|
par(mfrow = c(1,3))
|
||
|
dend15 %>% set("by_labels_branches_col", value = c(1,4), TF_values = c(3,Inf)) %>%
|
||
|
plot(main = "Change colors")
|
||
|
dend15 %>% set("by_labels_branches_lwd", value = c(1,4), TF_values = c(8,1)) %>%
|
||
|
plot(main = "Change line width")
|
||
|
dend15 %>% set("by_labels_branches_lty", value = c(1,4), TF_values = c(3,Inf)) %>%
|
||
|
plot(main = "Change line type")
|
||
|
|
||
|
## ----fig.width=8, fig.height=3------------------------------------------------
|
||
|
|
||
|
dat <- iris[1:20,-5]
|
||
|
hca <- hclust(dist(dat))
|
||
|
hca2 <- hclust(dist(dat), method = "single")
|
||
|
dend <- as.dendrogram(hca)
|
||
|
dend2 <- as.dendrogram(hca2)
|
||
|
|
||
|
par(mfrow = c(1,3))
|
||
|
dend %>% highlight_branches_col %>% plot(main = "Coloring branches")
|
||
|
dend %>% highlight_branches_lwd %>% plot(main = "Emphasizing line-width")
|
||
|
dend %>% highlight_branches %>% plot(main = "Emphasizing color\n and line-width")
|
||
|
|
||
|
|
||
|
## ----fig.width=8, fig.height=4------------------------------------------------
|
||
|
|
||
|
library(viridis)
|
||
|
par(mfrow = c(1,3))
|
||
|
dend %>% highlight_branches_col %>% plot(main = "Coloring branches \n (default is reversed viridis)")
|
||
|
dend %>% highlight_branches_col(viridis(100)) %>% plot(main = "It is better to use \n lighter colors in the leaves")
|
||
|
dend %>% highlight_branches_col(rev(magma(1000))) %>% plot(main = "The magma color pallatte\n is also good")
|
||
|
|
||
|
dl <- dendlist(dend, dend2)
|
||
|
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE, highlight_branches_lwd = FALSE)
|
||
|
tanglegram(dl)
|
||
|
tanglegram(dl, fast = TRUE)
|
||
|
|
||
|
dl <- dendlist(highlight_branches(dend), highlight_branches(dend2))
|
||
|
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE)
|
||
|
|
||
|
# dend %>% set("highlight_branches_col") %>% plot
|
||
|
|
||
|
dl <- dendlist(dend, dend2) %>% set("highlight_branches_col")
|
||
|
tanglegram(dl, sort = TRUE, common_subtrees_color_lines = FALSE, highlight_distinct_edges = FALSE)
|
||
|
|
||
|
|
||
|
## ----fig.width=10, fig.height=3-----------------------------------------------
|
||
|
par(mfrow = c(1,3))
|
||
|
dend15 %>%
|
||
|
set("labels_colors") %>%
|
||
|
set("branches_k_color") %>%
|
||
|
plot(main = "First tree")
|
||
|
dend15 %>%
|
||
|
set("labels_colors") %>%
|
||
|
set("branches_k_color") %>%
|
||
|
rotate(as.character(5:1)) %>% #rotate to match labels new order
|
||
|
plot(main = "Rotated tree\n based on labels")
|
||
|
dend15 %>%
|
||
|
set("labels_colors") %>%
|
||
|
set("branches_k_color") %>%
|
||
|
rotate(5:1) %>% # the fifth label to go first is "4"
|
||
|
plot(main = "Rotated tree\n based on order")
|
||
|
|
||
|
## ----fig.width=12, fig.height=6-----------------------------------------------
|
||
|
dend110 <- c(1, 3:5, 7,9,10) %>% dist %>% hclust(method = "average") %>%
|
||
|
as.dendrogram %>% color_labels %>% color_branches
|
||
|
|
||
|
par(mfrow = c(1,3))
|
||
|
dend110 %>% plot(main = "Original tree")
|
||
|
dend110 %>% sort %>% plot(main = "labels sort")
|
||
|
dend110 %>% sort(type = "nodes") %>% plot(main = "nodes (ladderize) sort")
|
||
|
|
||
|
## ----fig.width=10, fig.height=3-----------------------------------------------
|
||
|
par(mfrow = c(1,3))
|
||
|
dend15 %>% plot(main = "First tree", ylim = c(0,3))
|
||
|
dend15 %>%
|
||
|
unbranch %>%
|
||
|
plot(main = "Unbranched tree", ylim = c(0,3))
|
||
|
dend15 %>%
|
||
|
unbranch(2) %>%
|
||
|
plot(main = "Unbranched tree (2)", ylim = c(0,3))
|
||
|
|
||
|
## ----fig.width=7, fig.height=3------------------------------------------------
|
||
|
par(mfrow = c(1,2))
|
||
|
dend15 %>% set("labels_colors") %>%
|
||
|
plot(main = "First tree", ylim = c(0,3))
|
||
|
dend15 %>% set("labels_colors") %>%
|
||
|
prune(c("1","5")) %>%
|
||
|
plot(main = "Prunned tree", ylim = c(0,3))
|
||
|
|
||
|
## ----fig.width=7, fig.height=3------------------------------------------------
|
||
|
par(mfrow = c(1,2))
|
||
|
dend_intersected <- intersect_trees(dend13, dend15)
|
||
|
dend_intersected[[1]] %>% plot
|
||
|
dend_intersected[[2]] %>% plot
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
# ladderize is like sort(..., type = "node")
|
||
|
dend <- iris[1:5,-5] %>% dist %>% hclust %>% as.dendrogram
|
||
|
par(mfrow = c(1,3))
|
||
|
dend %>% ladderize %>% plot(horiz = TRUE); abline(v = .2, col = 2, lty = 2)
|
||
|
dend %>% collapse_branch(tol = 0.2) %>% ladderize %>% plot(horiz = TRUE)
|
||
|
dend %>% collapse_branch(tol = 0.2) %>% ladderize %>% hang.dendrogram(hang = 0) %>% plot(horiz = TRUE)
|
||
|
|
||
|
## ----fig.width=6, fig.height=3------------------------------------------------
|
||
|
layout(t(c(1,1,1,2,2)))
|
||
|
|
||
|
dend15 %>% set("branches_k_color") %>% plot
|
||
|
dend15 %>% rect.dendrogram(k=3,
|
||
|
border = 8, lty = 5, lwd = 2)
|
||
|
|
||
|
dend15 %>% set("branches_k_color") %>% plot(horiz = TRUE)
|
||
|
dend15 %>% rect.dendrogram(k=3, horiz = TRUE,
|
||
|
border = 8, lty = 5, lwd = 2)
|
||
|
|
||
|
|
||
|
## ----fig.width=4, fig.height=4------------------------------------------------
|
||
|
is_odd <- ifelse(labels(dend15) %% 2, 2,3)
|
||
|
is_345 <- ifelse(labels(dend15) > 2, 3,4)
|
||
|
is_12 <- ifelse(labels(dend15) <= 2, 3,4)
|
||
|
k_3 <- cutree(dend15,k = 3, order_clusters_as_data = FALSE)
|
||
|
# The FALSE above makes sure we get the clusters in the order of the
|
||
|
# dendrogram, and not in that of the original data. It is like:
|
||
|
# cutree(dend15, k = 3)[order.dendrogram(dend15)]
|
||
|
the_bars <- cbind(is_odd, is_345, is_12, k_3)
|
||
|
the_bars[the_bars==2] <- 8
|
||
|
|
||
|
dend15 %>% plot
|
||
|
colored_bars(colors = the_bars, dend = dend15, sort_by_labels_order = FALSE)
|
||
|
# we use sort_by_labels_order = FALSE since "the_bars" were set based on the
|
||
|
# labels order. The more common use case is when the bars are based on a second variable
|
||
|
# from the same data.frame as dend was created from. Thus, the default
|
||
|
# sort_by_labels_order = TRUE would make more sense.
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
|
||
|
dend_mtcars <- mtcars[, c("mpg", "disp")] %>% dist %>% hclust(method = "average") %>% as.dendrogram
|
||
|
|
||
|
par(mar = c(10,2,1,1))
|
||
|
plot(dend_mtcars)
|
||
|
the_bars <- ifelse(mtcars$am, "grey", "gold")
|
||
|
colored_bars(colors = the_bars, dend = dend_mtcars, rowLabels = "am")
|
||
|
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
# Create a complex dend:
|
||
|
dend <- iris[1:30,-5] %>% dist %>% hclust %>% as.dendrogram %>%
|
||
|
set("branches_k_color", k=3) %>% set("branches_lwd", c(1.5,1,1.5)) %>%
|
||
|
set("branches_lty", c(1,1,3,1,1,2)) %>%
|
||
|
set("labels_colors") %>% set("labels_cex", c(.9,1.2)) %>%
|
||
|
set("nodes_pch", 19) %>% set("nodes_col", c("orange", "black", "plum", NA))
|
||
|
# plot the dend in usual "base" plotting engine:
|
||
|
plot(dend)
|
||
|
# Now let's do it in ggplot2 :)
|
||
|
ggd1 <- as.ggdend(dend)
|
||
|
library(ggplot2)
|
||
|
# the nodes are not implemented yet.
|
||
|
ggplot(ggd1) # reproducing the above plot in ggplot2 :)
|
||
|
ggplot(ggd1, horiz = TRUE, theme = NULL) # horiz plot (and let's remove theme) in ggplot2
|
||
|
# Adding some extra spice to it...
|
||
|
# creating a radial plot:
|
||
|
# ggplot(ggd1) + scale_y_reverse(expand = c(0.2, 0)) + coord_polar(theta="x")
|
||
|
# The text doesn't look so great, so let's remove it:
|
||
|
ggplot(ggd1, labels = FALSE) + scale_y_reverse(expand = c(0.2, 0)) + coord_polar(theta="x")
|
||
|
|
||
|
## ----fig.width=7, fig.height=3------------------------------------------------
|
||
|
if(require(DendSer)) {
|
||
|
par(mfrow = c(1,2))
|
||
|
DendSer.dendrogram(dend15)
|
||
|
|
||
|
dend15 %>% color_branches %>% plot
|
||
|
dend15 %>% color_branches %>% rotate_DendSer %>% plot
|
||
|
}
|
||
|
|
||
|
## ----message=FALSE, fig.width=7, fig.height=7---------------------------------
|
||
|
library(gplots)
|
||
|
|
||
|
x <- as.matrix(datasets::mtcars)
|
||
|
|
||
|
heatmap.2(x)
|
||
|
|
||
|
# now let's spice up the dendrograms a bit:
|
||
|
Rowv <- x %>% dist %>% hclust %>% as.dendrogram %>%
|
||
|
set("branches_k_color", k = 3) %>% set("branches_lwd", 4) %>%
|
||
|
ladderize
|
||
|
# rotate_DendSer(ser_weight = dist(x))
|
||
|
Colv <- x %>% t %>% dist %>% hclust %>% as.dendrogram %>%
|
||
|
set("branches_k_color", k = 2) %>% set("branches_lwd", 4) %>%
|
||
|
ladderize
|
||
|
# rotate_DendSer(ser_weight = dist(t(x)))
|
||
|
|
||
|
heatmap.2(x, Rowv = Rowv, Colv = Colv)
|
||
|
|
||
|
## ----message=FALSE, eval = FALSE----------------------------------------------
|
||
|
#
|
||
|
# # library(NMF)
|
||
|
# #
|
||
|
# # x <- as.matrix(datasets::mtcars)
|
||
|
# #
|
||
|
# # # now let's spice up the dendrograms a bit:
|
||
|
# # Rowv <- x %>% dist %>% hclust %>% as.dendrogram %>%
|
||
|
# # set("branches_k_color", k = 3) %>% set("branches_lwd", 4) %>%
|
||
|
# # ladderize
|
||
|
# # # rotate_DendSer(ser_weight = dist(x))
|
||
|
# # Colv <- x %>% t %>% dist %>% hclust %>% as.dendrogram %>%
|
||
|
# # set("branches_k_color", k = 2) %>% set("branches_lwd", 4) %>%
|
||
|
# # ladderize
|
||
|
# # # rotate_DendSer(ser_weight = dist(t(x)))
|
||
|
# #
|
||
|
# # aheatmap(x, Rowv = Rowv, Colv = Colv)
|
||
|
#
|
||
|
#
|
||
|
#
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
x <- as.matrix(datasets::mtcars)
|
||
|
# heatmaply(x)
|
||
|
# now let's spice up the dendrograms a bit:
|
||
|
Rowv <- x %>% dist %>% hclust %>% as.dendrogram %>%
|
||
|
set("branches_k_color", k = 3) %>% set("branches_lwd", 4) %>%
|
||
|
ladderize
|
||
|
# rotate_DendSer(ser_weight = dist(x))
|
||
|
Colv <- x %>% t %>% dist %>% hclust %>% as.dendrogram %>%
|
||
|
set("branches_k_color", k = 2) %>% set("branches_lwd", 4) %>%
|
||
|
ladderize
|
||
|
# rotate_DendSer(ser_weight = dist(t(x)))
|
||
|
|
||
|
## ----message=FALSE, cache = FALSE, eval = FALSE-------------------------------
|
||
|
# library(heatmaply)
|
||
|
# heatmaply(x, Rowv = Rowv, Colv = Colv)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
# let's get the clusters
|
||
|
library(dynamicTreeCut)
|
||
|
data(iris)
|
||
|
x <- iris[,-5] %>% as.matrix
|
||
|
hc <- x %>% dist %>% hclust
|
||
|
dend <- hc %>% as.dendrogram
|
||
|
|
||
|
# Find special clusters:
|
||
|
clusters <- cutreeDynamic(hc, distM = as.matrix(dist(x)), method = "tree")
|
||
|
# we need to sort them to the order of the dendrogram:
|
||
|
clusters <- clusters[order.dendrogram(dend)]
|
||
|
clusters_numbers <- unique(clusters) - (0 %in% clusters)
|
||
|
n_clusters <- length(clusters_numbers)
|
||
|
|
||
|
library(colorspace)
|
||
|
cols <- rainbow_hcl(n_clusters)
|
||
|
true_species_cols <- rainbow_hcl(3)[as.numeric(iris[,][order.dendrogram(dend),5])]
|
||
|
dend2 <- dend %>%
|
||
|
branches_attr_by_clusters(clusters, values = cols) %>%
|
||
|
color_labels(col = true_species_cols)
|
||
|
plot(dend2)
|
||
|
clusters <- factor(clusters)
|
||
|
levels(clusters)[-1] <- cols[-5][c(1,4,2,3)]
|
||
|
# Get the clusters to have proper colors.
|
||
|
# fix the order of the colors to match the branches.
|
||
|
colored_bars(clusters, dend, sort_by_labels_order = FALSE)
|
||
|
# here we used sort_by_labels_order = FALSE since the clusters were already sorted based on the dendrogram's order
|
||
|
|
||
|
|
||
|
## ----message=FALSE, fig.width=9, results='hide'-------------------------------
|
||
|
par(mfrow = c(1,2))
|
||
|
|
||
|
library(pvclust)
|
||
|
data(lung) # 916 genes for 73 subjects
|
||
|
set.seed(13134)
|
||
|
result <- pvclust(lung[1:100, 1:10],
|
||
|
method.dist="cor", method.hclust="average", nboot=10)
|
||
|
|
||
|
# with pvrect
|
||
|
plot(result)
|
||
|
pvrect(result)
|
||
|
|
||
|
# with a dendrogram of pvrect
|
||
|
dend <- as.dendrogram(result)
|
||
|
result %>% as.dendrogram %>%
|
||
|
plot(main = "Cluster dendrogram with AU/BP values (%)\n reproduced plot with dendrogram")
|
||
|
result %>% text
|
||
|
result %>% pvrect
|
||
|
|
||
|
## ----fig.height=8, fig.width=8------------------------------------------------
|
||
|
par(mfrow = c(2,2))
|
||
|
|
||
|
# with a modified dendrogram of pvrect
|
||
|
dend %>% pvclust_show_signif(result) %>%
|
||
|
plot(main = "Cluster dendrogram \n bp values are highlighted by signif")
|
||
|
|
||
|
dend %>% pvclust_show_signif(result, show_type = "lwd") %>%
|
||
|
plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are highlighted by signif")
|
||
|
result %>% text
|
||
|
result %>% pvrect(alpha=0.95)
|
||
|
|
||
|
|
||
|
dend %>% pvclust_show_signif_gradient(result) %>%
|
||
|
plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are colored by signif")
|
||
|
|
||
|
dend %>%
|
||
|
pvclust_show_signif_gradient(result) %>%
|
||
|
pvclust_show_signif(result) %>%
|
||
|
plot(main = "Cluster dendrogram with AU/BP values (%)\n bp values are colored+highlighted by signif")
|
||
|
result %>% text
|
||
|
result %>% pvrect(alpha=0.95)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
library(circlize)
|
||
|
|
||
|
dend <- iris[1:40,-5] %>% dist %>% hclust %>% as.dendrogram %>%
|
||
|
set("branches_k_color", k=3) %>% set("branches_lwd", c(5,2,1.5)) %>%
|
||
|
set("branches_lty", c(1,1,3,1,1,2)) %>%
|
||
|
set("labels_colors") %>% set("labels_cex", c(.6,1.5)) %>%
|
||
|
set("nodes_pch", 19) %>% set("nodes_col", c("orange", "black", "plum", NA))
|
||
|
|
||
|
par(mar = rep(0,4))
|
||
|
circlize_dendrogram(dend)
|
||
|
# circlize_dendrogram(dend, labels = FALSE)
|
||
|
# circlize_dendrogram(dend, facing = "inside", labels = FALSE)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
# dend <- iris[1:40,-5] %>% dist %>% hclust %>% as.dendrogram %>%
|
||
|
# set("branches_k_color", k=3) %>% set("branches_lwd", c(5,2,1.5)) %>%
|
||
|
# set("branches_lty", c(1,1,3,1,1,2)) %>%
|
||
|
# set("labels_colors") %>% set("labels_cex", c(.9,1.2)) %>%
|
||
|
# set("nodes_pch", 19) %>% set("nodes_col", c("orange", "black", "plum", NA))
|
||
|
|
||
|
set.seed(2015-07-10)
|
||
|
# In the following we get the dendrogram but can also get extra information on top of it
|
||
|
circos.initialize("foo", xlim = c(0, 40))
|
||
|
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {
|
||
|
circos.rect(1:40-0.8, rep(0, 40), 1:40-0.2, runif(40), col = rand_color(40), border = NA)
|
||
|
}, bg.border = NA)
|
||
|
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {
|
||
|
circos.text(1:40-0.5, rep(0, 40), labels(dend), col = labels_colors(dend),
|
||
|
facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.5))
|
||
|
}, bg.border = NA, track.height = 0.1)
|
||
|
max_height = attr(dend, "height")
|
||
|
circos.track(ylim = c(0, max_height), panel.fun = function(x, y) {
|
||
|
circos.dendrogram(dend, max_height = max_height)
|
||
|
}, track.height = 0.5, bg.border = NA)
|
||
|
circos.clear()
|
||
|
|
||
|
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
dend15 <- c(1:5) %>% dist %>% hclust(method = "average") %>% as.dendrogram
|
||
|
dend15 <- dend15 %>% set("labels_to_char")
|
||
|
dend51 <- dend15 %>% set("labels", as.character(5:1)) %>% match_order_by_labels(dend15)
|
||
|
dends_15_51 <- dendlist(dend15, dend51)
|
||
|
dends_15_51
|
||
|
head(dends_15_51)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
# example 1
|
||
|
x <- 1:5 %>% dist %>% hclust %>% as.dendrogram
|
||
|
y <- set(x, "labels", 5:1)
|
||
|
|
||
|
# example 2
|
||
|
dend1 <- 1:10 %>% dist %>% hclust %>% as.dendrogram
|
||
|
dend2 <- dend1 %>% set("labels", c(1,3,2,4, 5:10) )
|
||
|
dend_diff(dend1, dend2)
|
||
|
|
||
|
## ----fig.width=5, fig.height=3------------------------------------------------
|
||
|
tanglegram(dends_15_51)
|
||
|
# Same as using:
|
||
|
# plot(dends_15_51) # since there is a plot method for dendlist
|
||
|
# and also:
|
||
|
# tanglegram(dend15, dend51)
|
||
|
|
||
|
## ----fig.width=5, fig.height=3------------------------------------------------
|
||
|
tanglegram(dends_15_51, common_subtrees_color_branches = TRUE)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
dends_15_51 %>% entanglement # lower is better
|
||
|
# dends_15_51 %>% untangle(method = "DendSer") %>% entanglement # lower is better
|
||
|
dends_15_51 %>% untangle(method = "step1side") %>% entanglement # lower is better
|
||
|
|
||
|
## ----fig.width=5, fig.height=3------------------------------------------------
|
||
|
dends_15_51 %>% untangle(method = "step1side") %>%
|
||
|
tanglegram(common_subtrees_color_branches = TRUE)
|
||
|
|
||
|
## ----fig.width=5, fig.height=3------------------------------------------------
|
||
|
x <- dends_15_51
|
||
|
x %>% plot(main = paste("entanglement =", round(entanglement(x), 2)))
|
||
|
|
||
|
## ----fig.width=5, fig.height=3------------------------------------------------
|
||
|
# x <- dends_15_51 %>% untangle(method = "DendSer")
|
||
|
x <- dends_15_51 %>% untangle(method = "ladderize")
|
||
|
x %>% plot(main = paste("entanglement =", round(entanglement(x), 2)))
|
||
|
|
||
|
## ----fig.width=5, fig.height=3------------------------------------------------
|
||
|
set.seed(3958)
|
||
|
x <- dends_15_51 %>% untangle(method = "random", R = 10)
|
||
|
x %>% plot(main = paste("entanglement =", round(entanglement(x), 2)))
|
||
|
|
||
|
## ----fig.width=5, fig.height=3------------------------------------------------
|
||
|
x <- dends_15_51 %>% untangle(method = "step2side")
|
||
|
x %>% plot(main = paste("entanglement =", round(entanglement(x), 2)))
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
set.seed(23235)
|
||
|
ss <- sample(1:150, 10 )
|
||
|
dend1 <- iris[ss,-5] %>% dist %>% hclust("com") %>% as.dendrogram
|
||
|
dend2 <- iris[ss,-5] %>% dist %>% hclust("single") %>% as.dendrogram
|
||
|
dend3 <- iris[ss,-5] %>% dist %>% hclust("ave") %>% as.dendrogram
|
||
|
dend4 <- iris[ss,-5] %>% dist %>% hclust("centroid") %>% as.dendrogram
|
||
|
|
||
|
dend1234 <- dendlist("Complete" = dend1, "Single" = dend2, "Average" = dend3, "Centroid" = dend4)
|
||
|
|
||
|
par(mfrow = c(2,2))
|
||
|
plot(dend1, main = "Complete")
|
||
|
plot(dend2, main = "Single")
|
||
|
plot(dend3, main = "Average")
|
||
|
plot(dend4, main = "Centroid")
|
||
|
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
all.equal(dend1, dend1)
|
||
|
all.equal(dend1, dend2)
|
||
|
all.equal(dend1, dend2, use.edge.length = FALSE)
|
||
|
all.equal(dend1, dend2, use.edge.length = FALSE, use.topology = FALSE)
|
||
|
|
||
|
all.equal(dend2, dend4, use.edge.length = TRUE)
|
||
|
all.equal(dend2, dend4, use.edge.length = FALSE)
|
||
|
|
||
|
all.equal(dendlist(dend1, dend1, dend1))
|
||
|
|
||
|
all.equal(dend1234)
|
||
|
all.equal(dend1234, use.edge.length = FALSE)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
x <- 1:5 %>% dist %>% hclust %>% as.dendrogram
|
||
|
y <- set(x, "labels", 5:1)
|
||
|
|
||
|
dist.dendlist(dendlist(x1 = x,x2 = x,y1 = y))
|
||
|
dend_diff(x,y)
|
||
|
|
||
|
dist.dendlist(dend1234)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
cor.dendlist(dend1234)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
library(corrplot)
|
||
|
corrplot(cor.dendlist(dend1234), "pie", "lower")
|
||
|
|
||
|
## ----fig.width=5, fig.height=3------------------------------------------------
|
||
|
# same subtrees, so there is no need to color the branches
|
||
|
dend1234 %>% tanglegram(which = c(2,3))
|
||
|
# Here the branches colors are very helpful:
|
||
|
dend1234 %>% tanglegram(which = c(1,2),
|
||
|
common_subtrees_color_branches = TRUE)
|
||
|
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
cor_bakers_gamma(dend15, dend51)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
cor_bakers_gamma(dend15, dend15)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
set.seed(23235)
|
||
|
the_cor <- cor_bakers_gamma(dend15, dend15)
|
||
|
the_cor2 <- cor_bakers_gamma(dend15, dend51)
|
||
|
the_cor
|
||
|
the_cor2
|
||
|
|
||
|
R <- 100
|
||
|
cor_bakers_gamma_results <- numeric(R)
|
||
|
dend_mixed <- dend15
|
||
|
for(i in 1:R) {
|
||
|
dend_mixed <- sample.dendrogram(dend_mixed, replace = FALSE)
|
||
|
cor_bakers_gamma_results[i] <- cor_bakers_gamma(dend15, dend_mixed)
|
||
|
}
|
||
|
plot(density(cor_bakers_gamma_results),
|
||
|
main = "Baker's gamma distribution under H0",
|
||
|
xlim = c(-1,1))
|
||
|
abline(v = 0, lty = 2)
|
||
|
abline(v = the_cor, lty = 2, col = 2)
|
||
|
abline(v = the_cor2, lty = 2, col = 4)
|
||
|
legend("topleft", legend = c("cor", "cor2"), fill = c(2,4))
|
||
|
round(sum(the_cor2 < cor_bakers_gamma_results)/ R, 4)
|
||
|
title(sub = paste("One sided p-value:",
|
||
|
"cor =", round(sum(the_cor < cor_bakers_gamma_results)/ R, 4),
|
||
|
" ; cor2 =", round(sum(the_cor2 < cor_bakers_gamma_results)/ R, 4)
|
||
|
))
|
||
|
|
||
|
## ----warning=FALSE------------------------------------------------------------
|
||
|
|
||
|
dend1 <- dend15
|
||
|
dend2 <- dend51
|
||
|
|
||
|
set.seed(23801)
|
||
|
|
||
|
R <- 100
|
||
|
dend1_labels <- labels(dend1)
|
||
|
dend2_labels <- labels(dend2)
|
||
|
cor_bakers_gamma_results <- numeric(R)
|
||
|
for(i in 1:R) {
|
||
|
sampled_labels <- sample(dend1_labels, replace = TRUE)
|
||
|
# members needs to be fixed since it will be later used in nleaves
|
||
|
dend_mixed1 <- sample.dendrogram(dend1,
|
||
|
dend_labels=dend1_labels,
|
||
|
fix_members=TRUE,fix_order=TRUE,fix_midpoint=FALSE,
|
||
|
replace = TRUE, sampled_labels=sampled_labels
|
||
|
)
|
||
|
dend_mixed2 <- sample.dendrogram(dend2, dend_labels=dend2_labels,
|
||
|
fix_members=TRUE,fix_order=TRUE,fix_midpoint=FALSE,
|
||
|
replace = TRUE, sampled_labels=sampled_labels
|
||
|
)
|
||
|
cor_bakers_gamma_results[i] <- cor_bakers_gamma(dend_mixed1, dend_mixed2, warn = FALSE)
|
||
|
}
|
||
|
|
||
|
|
||
|
# here is the tanglegram
|
||
|
tanglegram(dend1, dend2)
|
||
|
# And here is the tanglegram for one sample of our trees:
|
||
|
dend_mixed1 <- rank_order.dendrogram(dend_mixed1)
|
||
|
dend_mixed2 <- rank_order.dendrogram(dend_mixed2)
|
||
|
dend_mixed1 <- fix_members_attr.dendrogram(dend_mixed1)
|
||
|
dend_mixed2 <- fix_members_attr.dendrogram(dend_mixed2)
|
||
|
tanglegram(dend_mixed1, dend_mixed2)
|
||
|
cor_bakers_gamma(dend_mixed1, dend_mixed2, warn = FALSE)
|
||
|
|
||
|
|
||
|
CI95 <- quantile(cor_bakers_gamma_results, probs=c(.025,.975))
|
||
|
CI95
|
||
|
par(mfrow = c(1,1))
|
||
|
plot(density(cor_bakers_gamma_results),
|
||
|
main = "Baker's gamma bootstrap distribution",
|
||
|
xlim = c(-1,1))
|
||
|
abline(v = CI95, lty = 2, col = 3)
|
||
|
abline(v = cor_bakers_gamma(dend1, dend2), lty = 2, col = 2)
|
||
|
legend("topleft", legend =c("95% CI", "Baker's Gamma Index"), fill = c(3,2))
|
||
|
|
||
|
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
cor_cophenetic(dend15, dend51)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
hc1 <- hclust(dist(iris[,-5]), "com")
|
||
|
hc2 <- hclust(dist(iris[,-5]), "single")
|
||
|
|
||
|
# FM index of a cluster with himself is 1:
|
||
|
FM_index(cutree(hc1, k=3), cutree(hc1, k=3))
|
||
|
# FM index of two clusterings:
|
||
|
FM_index(cutree(hc1, k=3), cutree(hc2, k=3))
|
||
|
# we got a value far above the expected under H0
|
||
|
|
||
|
# Using the R code:
|
||
|
FM_index_R(cutree(hc1, k=3), cutree(hc2, k=3))
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
FM_index(cutree(hc1, k=3), cutree(hc2, k=3))
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
0.4462 + 1.645 * sqrt(6.464092e-05)
|
||
|
|
||
|
## -----------------------------------------------------------------------------
|
||
|
set.seed(23235)
|
||
|
ss <- TRUE # sample(1:150, 30 ) # TRUE #
|
||
|
hc1 <- hclust(dist(iris[ss,-5]), "com")
|
||
|
hc2 <- hclust(dist(iris[ss,-5]), "single")
|
||
|
dend1 <- as.dendrogram(hc1)
|
||
|
dend2 <- as.dendrogram(hc2)
|
||
|
# cutree(tree1)
|
||
|
|
||
|
# It works the same for hclust and dendrograms:
|
||
|
Bk(hc1, hc2, k = 3)
|
||
|
Bk(dend1, dend2, k = 3)
|
||
|
|
||
|
## ----warning=FALSE------------------------------------------------------------
|
||
|
Bk_plot(hc1, hc2, main = "WRONG Bk plot \n(due to the way cutree works with ties in hclust)", warn = FALSE)
|
||
|
Bk_plot(dend1, dend2, main = "CORRECT Bk plot \n(based on dendrograms)")
|
||
|
|
||
|
## ----cache=FALSE--------------------------------------------------------------
|
||
|
sessionInfo()
|
||
|
|