225 lines
7.1 KiB
Plaintext
Raw Normal View History

2025-01-12 00:52:51 +08:00
R version 3.6.0 Patched (2019-05-14 r76502) -- "Planting of a Tree"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(cluster)
>
> tools::assertWarning(eh <- ellipsoidhull(cbind(x=1:4, y = 1:4)), verbose=TRUE) #singular
Error in Fortran routine computing the spanning ellipsoid,
probably collinear data
Asserted warning: algorithm possibly not converged in 5000 iterations
> eh ## center ok, shape "0 volume" --> Warning
'ellipsoid' in 2 dimensions:
center = ( 2.5 2.5 ); squared ave.radius d^2 = 0
and shape matrix =
x y
x 1.25 1.25
y 1.25 1.25
hence, area = 0
** Warning: ** the algorithm did not terminate reliably!
most probably because of collinear data
> stopifnot(volume(eh) == 0)
>
> set.seed(157)
> for(n in 4:10) { ## n=2 and 3 still differ -- platform dependently!
+ cat("n = ",n,"\n")
+ x2 <- rnorm(n)
+ print(ellipsoidhull(cbind(1:n, x2)))
+ print(ellipsoidhull(cbind(1:n, x2, 4*x2 + rnorm(n))))
+ }
n = 4
'ellipsoid' in 2 dimensions:
center = ( 2.66215 0.82086 ); squared ave.radius d^2 = 2
and shape matrix =
x2
1.55901 0.91804
x2 0.91804 0.67732
hence, area = 2.9008
'ellipsoid' in 3 dimensions:
center = ( 2.50000 0.74629 2.95583 ); squared ave.radius d^2 = 3
and shape matrix =
x2
1.25000 0.72591 1.8427
x2 0.72591 0.52562 1.5159
1.84268 1.51588 4.7918
hence, volume = 3.1969
n = 5
'ellipsoid' in 2 dimensions:
center = ( 3.0726 1.2307 ); squared ave.radius d^2 = 2
and shape matrix =
x2
2.21414 0.45527
x2 0.45527 2.39853
hence, area = 14.194
'ellipsoid' in 3 dimensions:
center = ( 2.7989 1.1654 4.6782 ); squared ave.radius d^2 = 3
and shape matrix =
x2
1.92664 0.40109 1.4317
x2 0.40109 1.76625 6.9793
1.43170 6.97928 28.0530
hence, volume = 26.631
n = 6
'ellipsoid' in 2 dimensions:
center = ( 3.04367 0.97016 ); squared ave.radius d^2 = 2
and shape matrix =
x2
4.39182 0.30833
x2 0.30833 0.59967
hence, area = 10.011
'ellipsoid' in 3 dimensions:
center = ( 3.3190 0.7678 3.2037 ); squared ave.radius d^2 = 3
and shape matrix =
x2
2.786928 -0.044373 -1.1467
x2 -0.044373 0.559495 1.5496
-1.146728 1.549620 5.5025
hence, volume = 24.804
n = 7
'ellipsoid' in 2 dimensions:
center = ( 3.98294 -0.16567 ); squared ave.radius d^2 = 2
and shape matrix =
x2
4.62064 -0.83135
x2 -0.83135 0.37030
hence, area = 6.3453
'ellipsoid' in 3 dimensions:
center = ( 4.24890 -0.25918 -0.76499 ); squared ave.radius d^2 = 3
and shape matrix =
x2
4.6494 -0.93240 -4.0758
x2 -0.9324 0.39866 1.9725
-4.0758 1.97253 10.4366
hence, volume = 16.152
n = 8
'ellipsoid' in 2 dimensions:
center = ( 3.6699 -0.4532 ); squared ave.radius d^2 = 2
and shape matrix =
x2
9.4327 -2.5269
x2 -2.5269 3.7270
hence, area = 33.702
'ellipsoid' in 3 dimensions:
center = ( 4.22030 -0.37953 -1.53922 ); squared ave.radius d^2 = 3
and shape matrix =
x2
7.5211 -1.4804 -6.6587
x2 -1.4804 2.6972 11.8198
-6.6587 11.8198 52.6243
hence, volume = 84.024
n = 9
'ellipsoid' in 2 dimensions:
center = ( 5.324396 -0.037779 ); squared ave.radius d^2 = 2
and shape matrix =
x2
10.1098 -1.3708
x2 -1.3708 2.1341
hence, area = 27.885
'ellipsoid' in 3 dimensions:
center = ( 5.44700 -0.12504 -1.13538 ); squared ave.radius d^2 = 3
and shape matrix =
x2
7.0364 -1.2424 -5.5741
x2 -1.2424 1.7652 7.3654
-5.5741 7.3654 31.5558
hence, volume = 64.161
n = 10
'ellipsoid' in 2 dimensions:
center = ( 4.85439 0.28401 ); squared ave.radius d^2 = 2
and shape matrix =
x2
13.932 0.64900
x2 0.649 0.95132
hence, area = 22.508
'ellipsoid' in 3 dimensions:
center = ( 5.12537 0.25024 0.86441 ); squared ave.radius d^2 = 3
and shape matrix =
x2
9.29343 0.56973 1.4143
x2 0.56973 0.76519 1.8941
1.41427 1.89409 6.3803
hence, volume = 73.753
>
> set.seed(1)
> x <- rt(100, df = 4)
> y <- 100 + 5 * x + rnorm(100)
> ellipsoidhull(cbind(x,y))
'ellipsoid' in 2 dimensions:
center = ( -1.3874 93.0589 ); squared ave.radius d^2 = 2
and shape matrix =
x y
x 32.924 160.54
y 160.543 785.88
hence, area = 62.993
> z <- 10 - 8 * x + y + rnorm(100)
> (e3 <- ellipsoidhull(cbind(x,y,z)))
'ellipsoid' in 3 dimensions:
center = ( -0.71678 96.09950 111.61029 ); squared ave.radius d^2 = 3
and shape matrix =
x y z
x 26.005 126.41 -80.284
y 126.410 616.94 -387.459
z -80.284 -387.46 254.006
hence, volume = 301.25
> d3o <- cbind(x,y + rt(100,3), 2 * x^2 + rt(100, 2))
> (e. <- ellipsoidhull(d3o, ret.sq = TRUE))
'ellipsoid' in 3 dimensions:
center = ( 0.32491 101.68998 39.48045 ); squared ave.radius d^2 = 3
and shape matrix =
x
x 19.655 94.364 48.739
94.364 490.860 181.022
48.739 181.022 1551.980
hence, volume = 21856
> stopifnot(all.equal(e.$sqdist,
+ with(e., mahalanobis(d3o, center=loc, cov=cov)),
+ tol = 1e-13))
> d5 <- cbind(d3o, 2*abs(y)^1.5 + rt(100,3), 3*x - sqrt(abs(y)))
> (e5 <- ellipsoidhull(d5, ret.sq = TRUE))
'ellipsoid' in 5 dimensions:
center = ( -0.32451 98.54780 37.33619 1973.88383 -10.81891 ); squared ave.radius d^2 = 5
and shape matrix =
x
x 17.8372 87.0277 8.3389 2607.9 49.117
87.0277 446.9453 -2.0502 12745.4 239.470
8.3389 -2.0502 1192.8439 2447.8 24.458
2607.9264 12745.3826 2447.8006 384472.1 7179.239
49.1172 239.4703 24.4582 7179.2 135.260
hence, volume = 191410
> tail(sort(e5$sqdist)) ## 4 values 5.00039 ... 5.0099
[1] 4.999915 5.000005 5.000010 5.000088 5.001444 5.009849
>
> (e5.1e77 <- ellipsoidhull(1e77*d5))
'ellipsoid' in 5 dimensions:
center = ( -3.2451e+76 9.8548e+78 3.7336e+78 1.9739e+80 -1.0819e+78 ); squared ave.radius d^2 = 5
and shape matrix =
x
x 1.7837e+155 8.7028e+155 8.3389e+154 2.6079e+157 4.9117e+155
8.7028e+155 4.4695e+156 -2.0502e+154 1.2745e+158 2.3947e+156
8.3389e+154 -2.0502e+154 1.1928e+157 2.4478e+157 2.4458e+155
2.6079e+157 1.2745e+158 2.4478e+157 3.8447e+159 7.1792e+157
4.9117e+155 2.3947e+156 2.4458e+155 7.1792e+157 1.3526e+156
hence, volume = exp(898.66)
> stopifnot(# proof correct scaling c^5
+ all.equal(volume(e5.1e77, log=TRUE) - volume(e5, log=TRUE),
+ ncol(d5) * 77* log(10))
+ )
>
> proc.time()
user system elapsed
0.117 0.034 0.210