283 lines
9.8 KiB
R
283 lines
9.8 KiB
R
|
### R code from vignette source 'population.Rnw'
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 1: population.Rnw:20-26
|
||
|
###################################################
|
||
|
options(continue=" ", width=70)
|
||
|
options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1))))
|
||
|
pdf.options(pointsize=8) #text in graph about the same as regular text
|
||
|
options(contrasts=c("contr.treatment", "contr.poly")) #reset default
|
||
|
library(survival)
|
||
|
library(splines)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 2: fig1
|
||
|
###################################################
|
||
|
getOption("SweaveHooks")[["fig"]]()
|
||
|
plot(c(50,85), c(2,4.5), type='n', xlab="Age", ylab="Effect")
|
||
|
#abline(.645, .042, lty=1, col=1, lwd=2)
|
||
|
#abline(.9, .027, lty=1, col=2, lwd=2)
|
||
|
abline(.35, .045, lty=1, col=1, lwd=2)
|
||
|
abline(1.1, .026, lty=1, col=2, lwd=2)
|
||
|
legend(50, 4.2, c("Treatment A", "Treatment B"),
|
||
|
col=c(1,2), lty=1, lwd=2, cex=1.3, bty='n')
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 3: solder1a
|
||
|
###################################################
|
||
|
summary(solder)
|
||
|
length(unique(solder$PadType))
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 4: solder1b
|
||
|
###################################################
|
||
|
getOption("SweaveHooks")[["fig"]]()
|
||
|
# reproduce their figure 1.1
|
||
|
temp <- lapply(1:5, function(x) tapply(solder$skips, solder[[x]], mean))
|
||
|
plot(c(0.5, 5.5), range(unlist(temp)), type='n', xaxt='n',
|
||
|
xlab="Factors", ylab ="mean number of skips")
|
||
|
|
||
|
axis(1, 1:5, names(solder)[1:5])
|
||
|
for (i in 1:5) {
|
||
|
y <- temp[[i]]
|
||
|
x <- rep(i, length(y))
|
||
|
text(x-.1, y, names(y), adj=1)
|
||
|
segments(i, min(y), i, max(y))
|
||
|
segments(x-.05, y, x+.05, y)
|
||
|
}
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 5: solder2
|
||
|
###################################################
|
||
|
with(solder[solder$Mask!='A6',], ftable(Opening, Solder, PadType))
|
||
|
|
||
|
fit1 <- lm(skips ~ Opening + Solder + Mask + PadType + Panel,
|
||
|
data=solder, subset= (Mask != 'A6'))
|
||
|
y1 <- yates(fit1, ~Opening, population = "factorial")
|
||
|
print(y1, digits=2) # (less digits, for vignette page width)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 6: solder2b
|
||
|
###################################################
|
||
|
y2 <- yates(fit1, "Opening", population = "data", test="pairwise")
|
||
|
print(y2, digits=2)
|
||
|
#
|
||
|
# compare the two results
|
||
|
temp <- rbind(diff(y1$estimate[,"pmm"]), diff(y2$estimate[,"pmm"]))
|
||
|
dimnames(temp) <- list(c("factorial", "empirical"), c("2 vs 1", "3 vs 2"))
|
||
|
round(temp,5)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 7: solder3
|
||
|
###################################################
|
||
|
fit2 <- lm(skips ~ Opening + Mask*PadType + Panel, solder,
|
||
|
subset= (Mask != "A6"))
|
||
|
temp <- yates(fit2, ~Opening, population="factorial")
|
||
|
print(temp, digits=2)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 8: solder4
|
||
|
###################################################
|
||
|
fit3 <- lm(skips ~ Opening * Mask + Solder + PadType + Panel, solder)
|
||
|
temp <- yates(fit3, ~Mask, test="pairwise")
|
||
|
print(temp, digits=2)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 9: glm
|
||
|
###################################################
|
||
|
gfit2 <- glm(skips ~ Opening * Mask + PadType + Solder, data=solder,
|
||
|
family=poisson)
|
||
|
y1 <- yates(gfit2, ~ Mask, predict = "link")
|
||
|
print(y1, digits =2)
|
||
|
print( yates(gfit2, ~ Mask, predict = "response"), digits=2)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 10: glm3
|
||
|
###################################################
|
||
|
gfit1 <- glm(skips ~ Opening + Mask +PadType + Solder, data=solder,
|
||
|
family=poisson)
|
||
|
yates(gfit1, ~ Opening, test="pairwise", predict = "response",
|
||
|
population='data')
|
||
|
yates(gfit1, ~ Opening, test="pairwise", predict = "response",
|
||
|
population="yates")
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 11: data
|
||
|
###################################################
|
||
|
getOption("SweaveHooks")[["fig"]]()
|
||
|
male <- (flchain$sex=='M')
|
||
|
flchain$flc <- flchain$kappa + flchain$lambda
|
||
|
mlow <- with(flchain[male,], smooth.spline(age, flc))
|
||
|
flow <- with(flchain[!male,], smooth.spline(age, flc))
|
||
|
plot(flow, type='l', ylim=range(flow$y, mlow$y),
|
||
|
xlab="Age", ylab="FLC")
|
||
|
lines(mlow, col=2, lwd=2)
|
||
|
legend(60, 6, c("Female", "Male"), lty=1, col=1:2, lwd=2, bty='n')
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 12: counts
|
||
|
###################################################
|
||
|
flchain$flc <- flchain$kappa + flchain$lambda
|
||
|
age2 <- cut(flchain$age, c(49, 59, 69, 79, 89, 120),
|
||
|
labels=c("50-59", "60-69", "70-79", "80-89", "90+"))
|
||
|
fgroup <- cut(flchain$flc, quantile(flchain$flc, c(0, .5, .75, .9, 1)),
|
||
|
include.lowest=TRUE, labels=c("<50", "50-75", "75-90", ">90"))
|
||
|
counts <- with(flchain, table(sex, age2))
|
||
|
counts
|
||
|
#
|
||
|
# Mean FLC in each age/sex group
|
||
|
cellmean <- with(flchain, tapply(flc, list(sex, age2), mean))
|
||
|
round(cellmean,1)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 13: flc1
|
||
|
###################################################
|
||
|
library(splines)
|
||
|
flc1 <- lm(flc ~ sex, flchain)
|
||
|
flc2a <- lm(flc ~ sex + ns(age, 3), flchain)
|
||
|
flc2b <- lm(flc ~ sex + age2, flchain)
|
||
|
flc3a <- lm(flc ~ sex * ns(age, 3), flchain)
|
||
|
flc3b <- lm(flc ~ sex * age2, flchain)
|
||
|
#
|
||
|
# prediction at age 65 (which is near the mean)
|
||
|
tdata <- data.frame(sex=c("F", "M"), age=65, age2="60-69")
|
||
|
temp <- rbind("unadjusted" = predict(flc1, tdata),
|
||
|
"additive, continuous age" = predict(flc2a, tdata),
|
||
|
"additive, discrete age" = predict(flc2b, tdata),
|
||
|
"interaction, cont age" = predict(flc3a, tdata),
|
||
|
"interaction, discrete" = predict(flc3b, tdata))
|
||
|
temp <- cbind(temp, temp[,2]- temp[,1])
|
||
|
colnames(temp) <- c("Female", "Male", "M - F")
|
||
|
round(temp,2)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 14: flc2
|
||
|
###################################################
|
||
|
yates(flc3a, ~sex) # additive, continuous age
|
||
|
#
|
||
|
yates(flc3b, ~sex) # interaction, categorical age
|
||
|
#
|
||
|
yates(flc3b, ~sex, population="factorial")
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 15: flc3
|
||
|
###################################################
|
||
|
yates(flc3a, ~ age, levels=c(65, 75, 85))
|
||
|
yates(flc3b, ~ age2)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 16: cox1
|
||
|
###################################################
|
||
|
options(show.signif.stars=FALSE) # show statistical intelligence
|
||
|
coxfit1 <- coxph(Surv(futime, death) ~ sex, flchain)
|
||
|
coxfit2 <- coxph(Surv(futime, death) ~ sex + age, flchain)
|
||
|
coxfit3 <- coxph(Surv(futime, death) ~ sex * age, flchain)
|
||
|
anova(coxfit1, coxfit2, coxfit3)
|
||
|
#
|
||
|
exp(c(coef(coxfit1), coef(coxfit2)[1])) # sex estimate without and with age
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 17: coxfit2
|
||
|
###################################################
|
||
|
coxfit4 <- coxph(Surv(futime, death) ~ fgroup*age + sex, flchain)
|
||
|
yates(coxfit4, ~ fgroup, predict="linear")
|
||
|
yates(coxfit4, ~ fgroup, predict="risk")
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 18: surv
|
||
|
###################################################
|
||
|
# longest time to death
|
||
|
round(max(flchain$futime[flchain$death==1]) / 365.25, 1)
|
||
|
#compute naive survival curve
|
||
|
flkm <- survfit(Surv(futime, death) ~ fgroup, data=flchain)
|
||
|
print(flkm, rmean= 13*365.25, scale=365.25)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 19: surv2
|
||
|
###################################################
|
||
|
mypop <- flchain[seq(1, nrow(flchain), by=20), c("age", "sex")]
|
||
|
ysurv <- yates(coxfit4, ~fgroup, predict="survival", nsim=50,
|
||
|
population = mypop,
|
||
|
options=list(rmean=365.25*13))
|
||
|
ysurv
|
||
|
|
||
|
# display side by side
|
||
|
temp <- rbind("simple KM" = summary(flkm, rmean=13*365.25)$table[, "rmean"],
|
||
|
"population adjusted" = ysurv$estimate[,"pmm"])
|
||
|
round(temp/365.25, 2)
|
||
|
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 20: surv3
|
||
|
###################################################
|
||
|
getOption("SweaveHooks")[["fig"]]()
|
||
|
plot(flkm, xscale=365.25, fun="event", col=1:4, lty=2,
|
||
|
xlab="Years", ylab="Death")
|
||
|
lines(ysurv$summary, fun="event", col=1:4, lty=1, lwd=2)
|
||
|
legend(0, .65, levels(fgroup), lty=1, lwd=2, col=1:4, bty='n')
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 21: nstt
|
||
|
###################################################
|
||
|
options(contrasts = c("contr.treatment", "contr.poly")) # default
|
||
|
nfit1 <- lm(skips ~ Solder*Opening + PadType, solder)
|
||
|
drop1(nfit1, ~Solder)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 22: nstt2
|
||
|
###################################################
|
||
|
options(contrasts = c("contr.SAS", "contr.poly"))
|
||
|
nfit2 <- lm(skips ~ Solder*Opening + PadType, solder)
|
||
|
drop1(nfit2, ~Solder)
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 23: means
|
||
|
###################################################
|
||
|
with(solder, tapply(skips, list(Solder, Opening), mean))
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 24: nstt3
|
||
|
###################################################
|
||
|
options(contrasts = c("contr.sum", "contr.poly"))
|
||
|
nfit3 <- lm(skips ~ Solder*Opening + PadType, solder)
|
||
|
|
||
|
drop1(nfit3, ~Solder )
|
||
|
yates(nfit1, ~Solder, population='factorial')
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 25: nstt4
|
||
|
###################################################
|
||
|
options(contrasts = c("contr.treatment", "contr.poly")) # restore
|
||
|
|
||
|
|
||
|
###################################################
|
||
|
### code chunk number 26: sizes
|
||
|
###################################################
|
||
|
with(flchain, table(sex, age2))
|
||
|
|
||
|
|