85 lines
3.2 KiB
Plaintext
Raw Normal View History

2025-01-12 00:52:51 +08:00
R Under development (unstable) (2019-04-05 r76323) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #
> # Treble test for class trees with 2 outcomes
> #
> # fit1 and fit1b failed equality because .7 and .3 are not easily represented
> # in binary. Thus a complelxity param was 4e-17 (basically 0, but enough
> # to cause a split where it shouldn't be). Eric Lunde 2005-08-03
> library(rpart)
> control <- rpart.control(maxsurrogate=0, cp=1e-15, xval=0)
> set.seed(10)
>
> fit1 <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis,
+ control=control,
+ parms=list(prior=c(.7,.3),
+ loss=matrix(c(0,1,2,0),nrow=2,ncol=2)))
> wts <- rep(3, nrow(kyphosis))
> fit1b <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis,
+ control=control,
+ weights=wts,
+ parms=list(prior=c(.7,.3),
+ loss=matrix(c(0,1,2,0),nrow=2,ncol=2)))
> fit1b$frame$wt <- fit1b$frame$wt/3
> fit1b$frame$dev <- fit1b$frame$dev/3
> fit1b$frame$yval2[,2:3] <- fit1b$frame$yval2[,2:3]/3
> fit1b$splits[,3] <- fit1b$splits[,3]/3
> fit1b$variable.importance <- fit1b$variable.importance/3
> all.equal(fit1[-3], fit1b[-3]) #all but the "call"
[1] TRUE
>
> # Now for a set of non-equal weights
> nn <- nrow(kyphosis)
> pseudo <- double(nn)
> pseudo[1] <- pi/6
> for (i in 2:nn) pseudo[i] <- 4*pseudo[i-1]*(1-pseudo[i-1])
>
> wts <- rep(1:7, length=nn)
> temp <- rep(1:nn, wts) #row replicates
> xgrp <- rep(1:10, length=nn)[order(pseudo)]
> xgrp2<- rep(xgrp, wts)
>
> # The cp value stops one last split where the two predictors are
> # completely equal in importance (perfect surrogates), but the
> # weighted and unweighted pick a different one due to round off error
> tempc <- rpart.control(minsplit=2, xval=xgrp2, maxsurrogate=0, cp=.039)
> # Direct: replicate rows in the data set, and use unweighted
> fit2 <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis[temp,],
+ control=tempc,
+ parms=list(prior=c(.7,.3),
+ loss=matrix(c(0,1,2,0),nrow=2,ncol=2)))
> # Weighted
> tempc <- rpart.control(minsplit=2, xval=xgrp, maxsurrogate=0, cp=.039)
> fit2b <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis,
+ control=tempc, weights=wts,
+ parms=list(prior=c(.7,.3),
+ loss=matrix(c(0,1,2,0),nrow=2,ncol=2)))
>
> all.equal(fit2$frame[,-2], fit2b$frame[,-2]) # the "n" component won't match
[1] TRUE
> all.equal(fit2$cptable, fit2b$cptable)
[1] TRUE
> all.equal(fit2$splits[,-1],fit2b$splits[,-1])
[1] TRUE
> all.equal(fit2$csplit, fit2b$csplit)
[1] TRUE
>
> proc.time()
user system elapsed
0.130 0.020 0.144