52 lines
1.4 KiB
Plaintext
Raw Normal View History

2025-01-12 00:52:51 +08:00
R Under development (unstable) (2019-04-05 r76323) -- "Unsuffered Consequences"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #
> # Test out the rescaling done for Surv objects
> #
> library(rpart)
> require(survival)
Loading required package: survival
> set.seed(10)
>
> aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...)
> tdata <- data.frame(time=c(1,4,3,2,5,7,8,9,4), status=c(0,1,1,0,0,1,1,0,1),
+ x=1:9)
> fit2 <- rpart.exp(Surv(tdata$time, tdata$status), NULL, wt=rep(1,9))
>
> #
> # Here is what it should be, in order
> # for the intervals (0,3], (3,4], (4,7], (7,9]
> deaths <- c( 1, 2, 1, 1)
> pyears <- c(24, 6, 10, 3)
> rate <- deaths/pyears
> cumhaz <- cumsum(c(0, rate*c(3,1,3,2)))
>
> aeq(fit2$y[,2], tdata$status)
[1] TRUE
> aeq(fit2$y[,1], approx(c(0,3,4,7,9), cumhaz, tdata$time)$y)
[1] TRUE
>
>
>
>
>
>
> proc.time()
user system elapsed
0.690 0.044 0.730