179 lines
6.1 KiB
Plaintext
Raw Normal View History

2025-01-12 00:52:51 +08:00
% \VignetteIndexEntry{iterators Manual}
% \VignetteDepends{iterators}
% \VignettePackage{iterators}
\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage[pdftex]{graphicx}
\usepackage{color}
\usepackage{xspace}
\usepackage{fancyvrb}
\usepackage{fancyhdr}
\usepackage[
colorlinks=true,
linkcolor=blue,
citecolor=blue,
urlcolor=blue]
{hyperref}
\usepackage{lscape}
\usepackage{Sweave}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% define new colors for use
\definecolor{darkgreen}{rgb}{0,0.6,0}
\definecolor{darkred}{rgb}{0.6,0.0,0}
\definecolor{lightbrown}{rgb}{1,0.9,0.8}
\definecolor{brown}{rgb}{0.6,0.3,0.3}
\definecolor{darkblue}{rgb}{0,0,0.8}
\definecolor{darkmagenta}{rgb}{0.5,0,0.5}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\bld}[1]{\mbox{\boldmath $#1$}}
\newcommand{\shell}[1]{\mbox{$#1$}}
\renewcommand{\vec}[1]{\mbox{\bf {#1}}}
\newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize}
\newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize}
\newcommand{\halfs}{\frac{1}{2}}
\setlength{\oddsidemargin}{-.25 truein}
\setlength{\evensidemargin}{0truein}
\setlength{\topmargin}{-0.2truein}
\setlength{\textwidth}{7 truein}
\setlength{\textheight}{8.5 truein}
\setlength{\parindent}{0.20truein}
\setlength{\parskip}{0.10truein}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\pagestyle{fancy}
\lhead{}
\chead{Using The {\tt iterators} Package}
\rhead{}
\lfoot{}
\cfoot{}
\rfoot{\thepage}
\renewcommand{\headrulewidth}{1pt}
\renewcommand{\footrulewidth}{1pt}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Using The {\tt iterators} Package}
\author{Rich Calaway}
\begin{document}
\maketitle
\thispagestyle{empty}
\section{Introduction}
An {\em iterator} is a special type of object that generalizes the notion of
a looping variable. When passed as an argument to a function that knows what
to do with it, the iterator supplies a sequence of values. The iterator also
maintains information about its state, in particular its current index. The
\texttt{iterators} package includes a number of functions for creating
iterators, the simplest of which is \texttt{iter}, which takes
virtually any R object and turns it into an iterator object. The simplest
function that operates on iterators is the \texttt{nextElem} function, which
when given an iterator, returns the next value of the iterator. For example,
here we create an iterator object from the sequence 1 to 10, and then use
\texttt{nextElem} to iterate through the values:
<<ex1>>=
library(iterators)
i1 <- iter(1:10)
nextElem(i1)
nextElem(i1)
@
You can create iterators from matrices and data frames, using the \texttt{by} argument to specify whether to iterate by row or column:
<<ex2>>=
istate <- iter(state.x77, by='row')
nextElem(istate)
nextElem(istate)
@
Iterators can also be created from functions, in which case the iterator can be an endless source of values:
<<ex3>>=
ifun <- iter(function() sample(0:9, 4, replace=TRUE))
nextElem(ifun)
nextElem(ifun)
@
For practical applications, iterators can be paired with \texttt{foreach} to obtain parallel results quite easily:
\begin{Schunk}
\begin{Sinput}
> library(foreach)
\end{Sinput}
\begin{Soutput}
foreach: simple, scalable parallel programming from Revolution Analytics
Use Revolution R for scalability, fault tolerance and more.
http://www.revolutionanalytics.com
\end{Soutput}
\begin{Sinput}
> x <- matrix(rnorm(1e+06), ncol = 10000)
> itx <- iter(x, by = "row")
> foreach(i = itx, .combine = c) %dopar% mean(i)
\end{Sinput}
\begin{Soutput}
[1] -0.0069652059 0.0161112989 0.0080068074 -0.0120020610 0.0017168149
[6] 0.0139835943 -0.0078172106 -0.0024762273 -0.0031558268 -0.0072662893
[11] -0.0055142639 0.0015717907 -0.0100842965 -0.0123601527 0.0136420084
[16] -0.0242922105 -0.0126416949 -0.0052951152 0.0216329326 -0.0262476648
[21] 0.0041937609 0.0121253368 -0.0110165729 0.0044267635 0.0080241894
[26] 0.0042995539 -0.0102826632 0.0051185628 -0.0013970812 -0.0172380786
[31] 0.0096079613 0.0046837729 -0.0080726970 0.0083781727 -0.0234620163
[36] -0.0099883966 0.0026883628 0.0029367320 0.0205825899 0.0035303940
[41] 0.0204990426 -0.0010804987 -0.0033665481 -0.0127492019 -0.0147443195
[46] 0.0027046346 0.0016449793 0.0155575490 -0.0003488394 -0.0079238019
[51] 0.0086390030 -0.0039033309 0.0168593825 -0.0067189572 -0.0009925288
[56] -0.0162907048 -0.0059171838 0.0093806072 0.0100886929 -0.0111677408
[61] 0.0021754963 -0.0056770907 0.0081200698 -0.0029828717 -0.0163704350
[66] 0.0057266267 -0.0017156156 0.0214172738 -0.0141379874 -0.0126593342
[71] 0.0087124575 0.0040231519 0.0038515673 0.0066066908 0.0023586046
[76] -0.0044167901 -0.0090543553 0.0010806096 0.0102288061 0.0039881702
[81] -0.0054549319 -0.0127997275 -0.0031697122 -0.0016100996 -0.0143468118
[86] 0.0035904125 -0.0059399479 0.0085565480 -0.0159064868 0.0054120554
[91] -0.0084420572 0.0194448129 -0.0103192553 -0.0062924628 0.0215069258
[96] 0.0015749065 0.0109657488 0.0152237842 -0.0057181022 0.0035530715
\end{Soutput}
\end{Schunk}
\section{Some Special Iterators}
The notion of an iterator is new to R, but should be familiar to users of
languages such as Python. The \texttt{iterators} package includes a number of
special functions that generate iterators for some common scenarios. For
example, the
\texttt{irnorm} function creates an iterator for which each value is drawn
from a specified random normal distribution:
<<ex5>>=
library(iterators)
itrn <- irnorm(10)
nextElem(itrn)
nextElem(itrn)
@
Similarly, the \texttt{irunif}, \texttt{irbinom}, and \texttt{irpois} functions
create iterators which drawn their values from uniform, binomial, and Poisson
distributions, respectively.
We can then use these functions just as we used \texttt{irnorm}:
<<ex6>>=
itru <- irunif(10)
nextElem(itru)
nextElem(itru)
@
The \texttt{icount} function returns an iterator that counts starting from one:
<<ex7>>=
it <- icount(3)
nextElem(it)
nextElem(it)
nextElem(it)
@
\end{document}