285 lines
9.6 KiB
R
Raw Normal View History

2025-01-12 00:52:51 +08:00
options(na.action=na.exclude) # preserve missings
options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
library(survival)
# Tests of expected survival
aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
#
# This makes several scripts easier
#
mdy.Date <- function(m, d, y) {
y <- ifelse(y<100, y+1900, y)
as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y")
}
# This function takes a single subject and walks down the rate table
# Input: the vector of starting points, futime, and a ratetable
# Output: the full history of walking through said table. Let n= #unique
# rates that were used
# cell = n by #dims of the table: index of the table cell
# days = time spent in cell
# hazard= accumulated hazard = days * rate
# This does not do date or factor conversions -- start has to be numeric
#
ratewalk <- function(start, futime, ratetable=survexp.us) {
if (!is.ratetable(ratetable)) stop("Bad rate table")
ratedim <- dim(ratetable)
nvar <- length(ratedim)
if (length(start) != nvar) stop("Wrong length for start")
if (futime <=0) stop("Invalid futime")
attR <- attributes(ratetable)
discrete <- (attR$type ==1) #discrete categories
maxn <- sum(!discrete)*prod(ratedim[!discrete]) #most cells you can hit
cell <- matrix(0, nrow=maxn, ncol=nvar)
days <- hazard <- double(maxn)
eps <- 1e-8 #Avoid round off error
n <- 0
while (futime >0) {
n <- n+1
#what cell am I in?
# Note that at the edges of the rate table, we use the edge: if
# it only goes up the the year 2000, year 2000 is used for any
# dates beyond. This effectively eliminates one boundary
cell[n,discrete] <- start[discrete]
edge <- futime #time to nearest edge, or finish
for (j in which(!discrete)) {
indx <- sum(start[j] >= attR$cutpoints[[j]]-eps)
cell[n, j] <- max(1, indx)
if (indx < ratedim[j])
edge <- min(edge, (attR$cutpoints[[j]])[indx+1] - start[j])
}
days[n] <- edge #this many days in the cell
# using a matrix as a subscript is so handy sometimes
hazard[n] <- edge * (as.matrix(ratetable))[cell[n,,drop=F]]
futime <- futime - edge #amount of time yet to account for
start[!discrete] <- start[!discrete] + edge #walk forward in time
}
list(cell=cell[1:n,], days=days[1:n], hazard=hazard[1:n])
}
# Simple test of ratewalk: 20 years old, start on 7Sep 1960
# 116 days at the 1960, 20 year old male rate, through the end of the day
# on 12/31/1960, then 84 days at the 1961 rate.
# The decennial q for 1960 males is .00169.
zz <- ratewalk(c(20.4*365.25, 1, as.Date("1960/09/07")), 200)
all.equal(zz$hazard[1], -(116/365.25)*log(1-.00169))
all.equal(zz$days, c(116,84))
#
# Simple case 1: a single male subject, born 1/1/36 and entered on study 1/2/55
#
# Compute the 1, 5, 10 and 12 year expected survival
temp1 <- mdy.Date(1,1,36)
temp2 <- mdy.Date(1,2,55)
exp1 <- survexp(~1, ratetable=survexp.usr,times=c(366, 1827, 3653, 4383),
rmap= list(year=temp2, age=(temp2-temp1), sex=1, race='white'))
t12 <- as.numeric(temp2-temp1) # difftimes are a PITA
h1 <- ratewalk(c(t12, 1, 1, temp2), 366, survexp.usr)
h2 <- ratewalk(c(t12, 1, 1, temp2), 1827, survexp.usr)
h3 <- ratewalk(c(t12, 1, 1, temp2), 3653, survexp.usr)
h4 <- ratewalk(c(t12, 1, 1, temp2), 4383, survexp.usr)
aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard),
sum(h4$hazard)))
# pyears should give the same result
dummy <- data.frame(time = 4383,
year=temp2, sex = 1, age= temp2-temp1, race="white")
cuts <- tcut(0, c(0, 366, 1827, 3653, 4383))
exp1c <- pyears(time ~ cuts, data=dummy, ratetable=survexp.usr)
aeq(exp1$surv, exp(-cumsum(exp1c$expected)))
# Just a little harder:
# Born 3/1/25 and entered the study on 6/10/55. The code creates shifted
# dates to align with US rate tables - entry is 59 days earlier (days from
# 1/1/1925 to 3/1/1925).
#
temp1 <- mdy.Date(3,1,25)
temp2 <- mdy.Date(6,10,55)
exp1 <- survexp(~1, ratetable=survexp.usr,times=c(366, 1827, 3653, 4383),
rmap= list(year=temp2, age=(temp2-temp1), sex=2, race='black'))
tyear <- temp2 - 59
t12 <- as.numeric(temp2-temp1)
h1 <- ratewalk(c(t12, 2, 2, tyear), 366, survexp.usr)
h2 <- ratewalk(c(t12, 2, 2, tyear), 1827, survexp.usr)
h3 <- ratewalk(c(t12, 2, 2, tyear), 3653, survexp.usr)
h4 <- ratewalk(c(t12, 2, 2, tyear), 4383, survexp.usr)
aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard),
sum(h4$hazard)))
#
# Simple case 2: make sure that the averages are correct, for Ederer method
#
# Compute the 1, 5, 10 and 12 year expected survival
temp1 <- mdy.Date(1:6,6:11,1890:1895)
temp2 <- mdy.Date(6:1,11:6,c(55:50))
temp3 <- c(1,2,1,2,1,2)
age <- temp2 - temp1
exp1 <- survexp(~1, rmap= list(year=temp2, age=(temp2-temp1), sex=temp3),
times=c(366, 1827, 3653, 4383))
exp2 <- survexp(~ I(1:6),
rmap= list(year=temp2, age=(temp2-temp1), sex=temp3),
times=c(366, 1827, 3653, 4383))
exp3 <- exp2$surv
for (i in 1:length(temp1)){
exp3[,i] <- survexp(~ 1,
rmap = list(year=temp2, age=(temp2-temp1), sex=temp3),
times=c(366, 1827, 3653, 4383), subset=i)$surv
}
print(aeq(exp2$surv, exp3))
print(all.equal(exp1$surv, apply(exp2$surv, 1, mean)))
# They agree, but are they right?
#
for (i in 1:length(temp1)) {
offset <- as.numeric(temp1[i] - mdy.Date(1,1, 1889+i))
tyear = temp2[i] - offset
haz1 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 366)
haz2 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 1827)
haz3 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 3653)
haz4 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 4383)
print(aeq(-log(exp2$surv[,i]), c(sum(haz1$hazard), sum(haz2$hazard),
sum(haz3$hazard), sum(haz4$hazard))))
}
#
# Check that adding more time points doesn't change things
#
exp4 <- survexp(~ I(1:6),
rmap= list(year=temp2, age=(temp2-temp1), sex=temp3),
times=sort(c(366, 1827, 3653, 4383, 30*(1:100))))
aeq(exp4$surv[match(exp2$time, exp4$time),], exp2$surv)
exp4 <- survexp(~1,
rmap = list(year=temp2, age=(temp2-temp1), sex=temp3),
times=sort(c(366, 1827, 3653, 4383, 30*(1:100))))
aeq(exp1$surv, exp4$surv[match(exp1$time, exp4$time, nomatch=0)])
#
# Now test Hakulinen's method, assuming an analysis date of 3/1/57
#
futime <- mdy.Date(3,1,57) - temp2
xtime <- sort(c(futime, 30, 60, 185, 365))
exp1 <- survexp(futime ~ 1, rmap= list(year=temp2, age=(temp2-temp1), sex=1),
times=xtime, conditional=F)
exp2 <- survexp(~ I(1:6), times=futime,
rmap= list(year=temp2, age=(temp2-temp1), sex=1))
wt <- rep(1,6)
con <- double(6)
for (i in 1:6) {
con[i] <- sum(exp2$surv[i,i:6])/sum(wt[i:6])
wt <- exp2$surv[i,]
}
exp1$surv[match(futime, xtime)]
aeq(exp1$surv[match(futime, xtime)], cumprod(con))
#
# Now for the conditional method
#
exp1 <- survexp(futime ~ 1, rmap= list(year=temp2, age=(temp2-temp1), sex=1),
times=xtime, conditional=T)
cond <- exp2$surv
for (i in 6:2) cond[i,] <- (cond[i,]/cond[i-1,]) #conditional survival
for (i in 1:6) con[i] <- exp(mean(log(cond[i, i:6])))
all.equal(exp1$surv[match(futime, xtime)], cumprod(con))
cumprod(con)
#
# Test out expected survival, when the parent pop is another Cox model
#
test1 <- data.frame(time= c(4, 3,1,1,2,2,3),
status=c(1,NA,1,0,1,1,0),
x= c(0, 2,1,1,1,0,0))
fit <- coxph(Surv(time, status) ~x, test1, method='breslow')
dummy <- data.frame(time=c(.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5),
status=c(1,0,1,0,1,0,1,1,1), x=(-4:4)/2)
efit <- survexp(time ~ 1, rmap= list(x=x), dummy, ratetable=fit, cohort=F)
#
# Now, compare to the true answer, which is known to us
#
ss <- exp(fit$coef)
haz <- c( 1/(3*ss+3), 2/(ss+3), 1) #truth at time 0,1,2,4+
chaz <- cumsum(c(0,haz))
chaz2 <- chaz[c(1,2,2,3,3,3,3,4,4)]
risk <- exp(fit$coef*dummy$x)
efit2 <- exp(-risk*chaz2)
all.equal(as.vector(efit), as.vector(efit2)) #ignore mismatched name attrib
#
# Now test the direct-adjusted curve (Ederer)
#
efit <- survexp( ~ 1, dummy, ratetable=fit, se=F)
direct <- survfit(fit, newdata=dummy, censor=FALSE)$surv
chaz <- chaz[-1] #drop time 0
d2 <- exp(outer(-chaz, risk))
all.equal(as.vector(direct), as.vector(d2)) #this tests survfit
all.equal(as.vector(efit$surv), as.vector(apply(direct,1,mean))) #direct
# Check out the "times" arg of survexp
efit2 <- survexp( ~1, dummy, ratetable=fit, se=F,
times=c(.5, 2, 3.5,6))
aeq(efit2$surv, c(1, efit$surv[c(2,2,3)]))
#
# Now test out the Hakulinen method (Bonsel's method)
# By construction, we have a large correlation between x and censoring
#
# In theory, hak1 and hak2 would be the same. In practice, like a KM and
# F-H, they differ when n is small.
#
efit <- survexp( time ~1, dummy, ratetable=fit, se=F)
surv <- wt <- rep(1,9)
tt <- c(1,2,4)
hak1 <- hak2 <- NULL
for (i in 1:3) {
wt[dummy$time < tt[i]] <- 0
hak1 <- c(hak1, exp(-sum(haz[i]*risk*surv*wt)/sum(surv*wt)))
hak2 <- c(hak2, sum(exp(-haz[i]*risk)*surv*wt)/sum(surv*wt))
surv <- surv * exp(-haz[i]*risk)
}
all.equal(as.vector(efit$surv), as.vector(cumprod(hak1)))
#
# Now do the conditional estimate
#
efit <- survexp( time ~ 1, dummy, ratetable=fit, se=F,
conditional=T)
wt <- rep(1,9)
cond <- NULL
for (i in 1:3) {
wt[dummy$time < tt[i]] <- 0
cond <- c(cond, exp(-sum(haz[i]*risk*wt)/sum(wt)))
}
all.equal(as.vector(efit$surv), as.vector(cumprod(cond)))