42 lines
1.1 KiB
Plaintext
Raw Normal View History

2025-01-12 00:52:51 +08:00
## not necessarily reproducible examples.
library(parallel)
cl <- makeCluster(getOption("cl.cores", 2))
clusterApply(cl, 1:2, get("+"), 3)
xx <- 1
clusterExport(cl, "xx")
clusterCall(cl, function(y) xx + y, 2)
## Use clusterMap like an mapply example
clusterMap(cl, function(x,y) seq_len(x) + y,
c(a = 1, b = 2, c = 3), c(A = 10, B = 0, C = -10))
parSapply(cl, 1:20, get("+"), 3)
## PR14898
parSapply(cl, 1, identity)
if(require(boot, quietly = TRUE)) {
set.seed(11)
## A bootstrapping example, which can be done in many ways:
clusterEvalQ(cl, {
## set up each worker. Could also use clusterExport()
library(boot)
cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v)
cd4.mle <- list(m = colMeans(cd4), v = var(cd4))
NULL
})
res <- clusterEvalQ(cl, boot(cd4, corr, R = 100,
sim = "parametric", ran.gen = cd4.rg, mle = cd4.mle))
cd4.boot <- do.call(c, res)
print(boot.ci(cd4.boot, type = c("norm", "basic", "perc"),
conf = 0.9, h = atanh, hinv = tanh))
}
stopCluster(cl)