102 lines
4.1 KiB
Plaintext
102 lines
4.1 KiB
Plaintext
|
|
||
|
R Under development (unstable) (2021-01-18 r79846) -- "Unsuffered Consequences"
|
||
|
Copyright (C) 2021 The R Foundation for Statistical Computing
|
||
|
Platform: x86_64-pc-linux-gnu (64-bit)
|
||
|
|
||
|
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
||
|
You are welcome to redistribute it under certain conditions.
|
||
|
Type 'license()' or 'licence()' for distribution details.
|
||
|
|
||
|
R is a collaborative project with many contributors.
|
||
|
Type 'contributors()' for more information and
|
||
|
'citation()' on how to cite R or R packages in publications.
|
||
|
|
||
|
Type 'demo()' for some demos, 'help()' for on-line help, or
|
||
|
'help.start()' for an HTML browser interface to help.
|
||
|
Type 'q()' to quit R.
|
||
|
|
||
|
> library(survival)
|
||
|
> #
|
||
|
> # check of the Surv2 function
|
||
|
> #
|
||
|
> # Build a flat form of the mgus2 data set. Mix up the data set order, to test
|
||
|
> # out that part of the underlying code.
|
||
|
> set.seed(1953)
|
||
|
> m2 <- mgus2[sample(1:nrow(mgus2), nrow(mgus2),replace=FALSE),]
|
||
|
>
|
||
|
> temp1 <- data.frame(m2[,1:7], ftime=0)
|
||
|
> temp2 <- with(subset(m2, pstat==1),
|
||
|
+ data.frame(id=id, ftime=ptime, event="progression"))
|
||
|
>
|
||
|
> # competing risks: use only the first of death and progression
|
||
|
> temp3 <- with(subset(m2, pstat==0),
|
||
|
+ data.frame(id=id, ftime=futime,
|
||
|
+ event=ifelse(death==0, "censor", "death")))
|
||
|
> mflat <- merge(temp1, rbind(temp2, temp3), all=TRUE)
|
||
|
> mflat$event <- factor(mflat$event, c("censor", "progression", "death"))
|
||
|
>
|
||
|
> sfit1 <- survfit(Surv2(ftime, event) ~ sex, mflat, id=id)
|
||
|
>
|
||
|
> # now compare it to the usual way
|
||
|
> etime <- with(mgus2, ifelse(pstat==1, ptime, futime))
|
||
|
> estat <- with(mgus2, ifelse(pstat==1, 1, 2*death))
|
||
|
> estat <- factor(estat, 0:2, c("censor", "progression", "death"))
|
||
|
> sfit2 <- survfit(Surv(etime, estat) ~ sex, mgus2)
|
||
|
>
|
||
|
> all.equal(sfit1$pstate, sfit2$pstate)
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> # Cox model
|
||
|
> cfit1 <- coxph(Surv2(ftime, event) ~ sex + age, data=mflat, id=id)
|
||
|
> cfit2 <- coxph(Surv(etime, estat) ~ sex + age, data=mgus2, id=id)
|
||
|
> all.equal(cfit1[c("coefficients", "var", "loglik", "score")],
|
||
|
+ cfit2[c("coefficients", "var", "loglik", "score")])
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> # And using the explicit call to build a data set
|
||
|
> sdata <- Surv2data(Surv2(ftime, event) ~ ., data=mflat, id=id)
|
||
|
> cfit3 <- coxph(Surv2.y ~ sex + age, data=sdata, id=id)
|
||
|
> all.equal(cfit1[c("coefficients", "var", "loglik", "score")],
|
||
|
+ cfit3[c("coefficients", "var", "loglik", "score")])
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> # Create a data set with error = two events on the same day
|
||
|
> # A model with this data will generate an error.
|
||
|
> temp4 <- with(m2,
|
||
|
+ data.frame(id=id, ftime=futime,
|
||
|
+ event=ifelse(death==0, "censor", "death")))
|
||
|
> mflat2 <- merge(temp1, rbind(temp2, temp4), all=TRUE)
|
||
|
> mflat2$event <- factor(mflat2$event, c("censor", "prog", "death"))
|
||
|
> stemp <- survcheck(Surv2(ftime, event) ~ sex, data=mflat2, id=id)
|
||
|
> all.equal(stemp$duplicate$row, which(duplicated(mflat2[,c("id", "ftime")])))
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> # Full 3 state model. We need to make progressions that are tied with
|
||
|
> # deaths be just a bit sooner.
|
||
|
> temp2b <- with(subset(m2, pstat==1),
|
||
|
+ data.frame(id=id, ftime= ifelse(ptime==futime & death==1, ptime-.1, ptime),
|
||
|
+ event="progression"))
|
||
|
> temp3b <- with(m2,
|
||
|
+ data.frame(id=id, ftime=futime, event=ifelse(death==0, "censor", "death")))
|
||
|
>
|
||
|
> mflat3 <- merge(temp1, rbind(temp2b, temp3b), all=TRUE)
|
||
|
> mflat3$event <- factor(mflat3$event, c("censor", "progression", "death"))
|
||
|
>
|
||
|
> cfit4 <- coxph(Surv2(ftime, event) ~ sex + age + mspike, mflat3, id=id)
|
||
|
>
|
||
|
> # For a standard start-stop data set use tmerge
|
||
|
> m3 <- tmerge(m2[,1:7], subset(m2,,c(id, futime, death)), id=id,
|
||
|
+ event= event(futime, 2*death))
|
||
|
> m3 <- tmerge(m3, temp2b, id=id, event= event(ftime))
|
||
|
> m3$event <- factor(m3$event, 0:2, c("censor", "progression", "death"))
|
||
|
> cfit5 <- coxph(Surv(tstart, tstop, event) ~ sex + age + mspike, m3, id=id)
|
||
|
>
|
||
|
> all.equal(cfit4[c("coefficients", "var", "loglik", "score")],
|
||
|
+ cfit5[c("coefficients", "var", "loglik", "score")])
|
||
|
[1] TRUE
|
||
|
>
|
||
|
>
|
||
|
> proc.time()
|
||
|
user system elapsed
|
||
|
1.906 0.109 2.060
|