686 lines
32 KiB
Plaintext
686 lines
32 KiB
Plaintext
|
|
||
|
R Under development (unstable) (2023-11-29 r85646) -- "Unsuffered Consequences"
|
||
|
Copyright (C) 2023 The R Foundation for Statistical Computing
|
||
|
Platform: x86_64-pc-linux-gnu
|
||
|
|
||
|
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
||
|
You are welcome to redistribute it under certain conditions.
|
||
|
Type 'license()' or 'licence()' for distribution details.
|
||
|
|
||
|
R is a collaborative project with many contributors.
|
||
|
Type 'contributors()' for more information and
|
||
|
'citation()' on how to cite R or R packages in publications.
|
||
|
|
||
|
Type 'demo()' for some demos, 'help()' for on-line help, or
|
||
|
'help.start()' for an HTML browser interface to help.
|
||
|
Type 'q()' to quit R.
|
||
|
|
||
|
> library(cluster)
|
||
|
>
|
||
|
> x <- cbind(c(0, -4, -22, -14, 0, NA, -28, 1, 10, -1,
|
||
|
+ 100 + c(13, 0, 2, 4, 7, 8, 1)),
|
||
|
+ c(-5, -14, NA, -35, -30, NA, 7, 2, -18, 13,
|
||
|
+ 47, 64, 48, NA, NA, 44, 65))
|
||
|
> x
|
||
|
[,1] [,2]
|
||
|
[1,] 0 -5
|
||
|
[2,] -4 -14
|
||
|
[3,] -22 NA
|
||
|
[4,] -14 -35
|
||
|
[5,] 0 -30
|
||
|
[6,] NA NA
|
||
|
[7,] -28 7
|
||
|
[8,] 1 2
|
||
|
[9,] 10 -18
|
||
|
[10,] -1 13
|
||
|
[11,] 113 47
|
||
|
[12,] 100 64
|
||
|
[13,] 102 48
|
||
|
[14,] 104 NA
|
||
|
[15,] 107 NA
|
||
|
[16,] 108 44
|
||
|
[17,] 101 65
|
||
|
> (d <- dist(x,'manhattan'))
|
||
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
||
|
2 13
|
||
|
3 44 36
|
||
|
4 44 31 16
|
||
|
5 25 20 44 19
|
||
|
6 NA NA NA NA NA
|
||
|
7 40 45 12 56 65 NA
|
||
|
8 8 21 46 52 33 NA 34
|
||
|
9 23 18 64 41 22 NA 63 29
|
||
|
10 19 30 42 61 44 NA 33 13 42
|
||
|
11 165 178 270 209 190 NA 181 157 168 148
|
||
|
12 169 182 244 213 194 NA 185 161 172 152 30
|
||
|
13 155 168 248 199 180 NA 171 147 158 138 12 18
|
||
|
14 208 216 252 236 208 NA 264 206 188 210 18 8 4
|
||
|
15 214 222 258 242 214 NA 270 212 194 216 12 14 10 6
|
||
|
16 157 170 260 201 182 NA 173 149 160 140 8 28 10 8 2
|
||
|
17 171 184 246 215 196 NA 187 163 174 154 30 2 18 6 12 28
|
||
|
> summary(d, na.rm = TRUE) # max = 270
|
||
|
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
|
||
|
2.00 27.25 147.50 114.55 188.50 270.00 16
|
||
|
> ## First call with "trace" (seg.fault typically later ...):
|
||
|
> try( clara(x, k=2, metric="manhattan", sampsize=10, trace = 3) )
|
||
|
C clara(): (nsam,nran,n) = (10,5,17); 'large_sample',
|
||
|
- clara sample 1 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 1
|
||
|
[ntt=7, nunfs=0] .. nsel[1:10]= 6 7 8 9 10 12 13 14 16 17 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 2 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 3
|
||
|
[ntt=7, nunfs=1] .. nsel[1:10]= 1 4 7 9 11 12 13 15 16 17 -> dysta2();
|
||
|
clara -> s:= max{dys[1..45]} = 270;
|
||
|
bswap2(*, s=270), 1. BUILD: new repr. 7
|
||
|
new repr. 1
|
||
|
after build: medoids are 1 7
|
||
|
and min.dist dysma[1:n] are
|
||
|
0 44 40 23 12 18 0 10 10 18
|
||
|
--> sky = sum_j D_j= 175
|
||
|
swp new 8 <-> 7 old; decreasing diss. by -18
|
||
|
Last swap: new 8 <-> 7 old; decreasing diss. by 1
|
||
|
end{bswap2}: sky = 157
|
||
|
selec() -> 'NAfs' obj= 7.41176
|
||
|
- clara sample 3 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 6
|
||
|
[ntt=7, nunfs=2] .. nsel[1:10]= 1 2 3 5 8 9 10 11 13 17 -> dysta2();
|
||
|
clara -> s:= max{dys[1..45]} = 270;
|
||
|
bswap2(*, s=270), 1. BUILD: new repr. 5
|
||
|
new repr. 9
|
||
|
after build: medoids are 5 9
|
||
|
and min.dist dysma[1:n] are
|
||
|
8 21 46 33 0 29 13 12 0 18
|
||
|
--> sky = sum_j D_j= 180
|
||
|
swp new 1 <-> 5 old; decreasing diss. by -18
|
||
|
Last swap: new 1 <-> 5 old; decreasing diss. by 1
|
||
|
end{bswap2}: sky = 162
|
||
|
selec() -> 'NAfs' obj= 7.41176
|
||
|
- clara sample 4 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 5
|
||
|
[ntt=7, nunfs=3] .. nsel[1:10]= 1 2 3 4 7 8 9 10 13 14 -> dysta2();
|
||
|
clara -> s:= max{dys[1..45]} = 264;
|
||
|
bswap2(*, s=264), 1. BUILD: new repr. 1
|
||
|
new repr. 10
|
||
|
after build: medoids are 1 10
|
||
|
and min.dist dysma[1:n] are
|
||
|
0 13 44 44 40 8 23 19 4 0
|
||
|
--> sky = sum_j D_j= 195
|
||
|
Last swap: new 9 <-> 10 old; decreasing diss. by 0
|
||
|
end{bswap2}: sky = 195
|
||
|
selec() -> 'NAfs' obj= 7.41176
|
||
|
- clara sample 5 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 16
|
||
|
[ntt=7, nunfs=4] .. nsel[1:10]= 2 3 4 6 7 8 9 10 11 17 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
C clara() -> best sample _found_ ; nbest[1:10] =
|
||
|
c(0,0,0,0,0,0,0,0,0,0)
|
||
|
Error in clara(x, k = 2, metric = "manhattan", sampsize = 10, trace = 3) :
|
||
|
Observation 6 has *only* NAs --> omit it for clustering
|
||
|
In addition: Warning message:
|
||
|
In clara(x, k = 2, metric = "manhattan", sampsize = 10, trace = 3) :
|
||
|
Distance computations with NAs: using correct instead of pre-2016 wrong formula.
|
||
|
Use 'correct.d=FALSE' to get previous results or set 'correct.d=TRUE' explicitly
|
||
|
to suppress this warning.
|
||
|
> ## Originally:already shows the problem: nbest[] = c(0,0,...,0) must be WRONG!!
|
||
|
> ## Now: gives the proper error message.
|
||
|
>
|
||
|
> ## S-plus 6.1.2 (rel.2 for Linux, 2002) gives
|
||
|
> ##> cc <- clara(x, k=2, metric="manhattan", samples=2, sampsize=10)
|
||
|
> ## Problem in .Fortran("clara",: Internal error: data for decrementing
|
||
|
> ## ref.count didn't point to a valid arena (0x0), while calling subroutine clara
|
||
|
>
|
||
|
> ## The large example from clara.R -- made small enough to still provoke
|
||
|
> ## the "** dysta2() ... OUT" problem {no longer!}
|
||
|
> x <- matrix(c(0, 3, -4, 62, 1, 3, -7, 45, 36, 46, 45, 54, -10,
|
||
|
+ 51, 49, -5, 13, -6, 49, 52, 57, 39, -1, 55, 68, -3, 51, 11, NA,
|
||
|
+ 9, -3, 50, NA, 58, 9, 52, 12, NA, 47, -12, -6, -9, 5, 30, 38,
|
||
|
+ 54, -5, 39, 50, 50, 54, 43, 7, 64, 55, 4, 0, 72, 54, 37, 59,
|
||
|
+ -1, 8, 43, 50, -2, 56, -8, 43, 6, 4, 48, -2, 14, 45, 49, 56,
|
||
|
+ 51, 45, 11, 10, 42, 50, 2, -12, 3, 1, 2, 2, -14, -4, 8, 0, 3,
|
||
|
+ -11, 8, 5, 14, -1, 9, 0, 19, 10, -2, -9, 9, 2, 16, 10, 4, 1,
|
||
|
+ 12, 7, -4, 27, -8, -9, -9, 2, 8, NA, 13, -23, -3, -5, 1, 15,
|
||
|
+ -3, 5, -9, -5, 14, 8, 7, -4, 26, 20, 10, 8, 17, 4, 14, 23, -2,
|
||
|
+ 23, 2, 16, 5, 5, -3, 12, 5, 14, -2, 4, 2, -2, 7, 9, 1, -15, -1,
|
||
|
+ 9, 23, 1, 7, 13, 2, -11, 16, 12, -11, -14, 2, 6, -8),
|
||
|
+ ncol = 2)
|
||
|
> str(x) # 88 x 2
|
||
|
num [1:88, 1:2] 0 3 -4 62 1 3 -7 45 36 46 ...
|
||
|
> try(clara(x, 2, samples = 20, trace = 3))# 2nd sample did show dysta2() problem
|
||
|
C clara(): (nsam,nran,n) = (44,20,88);
|
||
|
- clara sample 1 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 2
|
||
|
[ntt=44, nunfs=0] .. nsel[1:44]= 2 3 4 6 9 10 12 14 15 18 19 20 24 25 26 28 31 35 38 42 47 48 51 53 54 57 60 61 64 66 68 70 71 73 74 75 76 77 78 79 80 81 82 88 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 78.6448;
|
||
|
bswap2(*, s=78.6448), 1. BUILD: new repr. 19
|
||
|
new repr. 9
|
||
|
after build: medoids are 9 19
|
||
|
and min.dist dysma[1:n] are
|
||
|
21.2 7.07 9.9 2.83 5.66 5 5.1 9.22 0 11.3
|
||
|
1.41 6.71 6.32 8.49 7.07 12.7 1.41 33.9 0 14.1
|
||
|
7.07 18.9 5.39 4.24 15.5 31.1 5.66 5.66 5.66 4.24
|
||
|
1.41 8.49 11.3 22.6 2.83 4.12 13 0 3.61 5
|
||
|
1.41 17 9.22 12.7
|
||
|
--> sky = sum_j D_j= 385.677
|
||
|
Last swap: new 6 <-> 9 old; decreasing diss. by 0.939294
|
||
|
end{bswap2}: sky = 385.677
|
||
|
selec() -> 'NAfs' obj= 2.59347
|
||
|
- clara sample 2 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 12
|
||
|
[ntt=44, nunfs=1] .. nsel[1:44]= 1 2 3 5 6 7 9 12 17 19 26 27 28 29 30 38 39 42 43 45 47 50 52 54 55 56 58 59 60 61 62 64 67 68 71 74 75 76 77 79 80 81 83 84 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 81.7435;
|
||
|
bswap2(*, s=81.7435), 1. BUILD: new repr. 16
|
||
|
new repr. 43
|
||
|
after build: medoids are 16 43
|
||
|
and min.dist dysma[1:n] are
|
||
|
1.41 21.2 7.07 1.41 2.83 17 5.66 5 14.1 1.41
|
||
|
7.07 15 12.7 14.1 14.1 0 4.24 14.1 8.49 9.9
|
||
|
7.07 2 8.6 14.1 12.1 4.24 1.41 5.66 5.66 5.66
|
||
|
5.66 5.66 4.24 1.41 11.3 2.83 5.83 11 0 5.1
|
||
|
1.41 17 0 17
|
||
|
--> sky = sum_j D_j= 331.98
|
||
|
Last swap: new 17 <-> 43 old; decreasing diss. by 0.492109
|
||
|
end{bswap2}: sky = 331.98
|
||
|
selec() -> 'NAfs' obj= 2.55701
|
||
|
- clara sample 3 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 14
|
||
|
[ntt=44, nunfs=2] .. nsel[1:44]= 1 3 4 6 7 9 12 14 15 16 18 19 20 29 30 31 32 36 38 39 40 44 46 47 48 49 51 53 54 56 57 60 62 64 65 66 67 73 75 77 79 81 82 87 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 77.8781;
|
||
|
bswap2(*, s=77.8781), 1. BUILD: new repr. 19
|
||
|
new repr. 35
|
||
|
after build: medoids are 19 35
|
||
|
and min.dist dysma[1:n] are
|
||
|
1.41 7.07 9.9 2.83 17 5.66 6.4 5.1 4.12 4.24
|
||
|
11.3 1.41 2.83 14.1 14.1 1.41 6 5.66 0 3.16
|
||
|
5.66 18.4 8.06 7.07 16.3 6 7.21 4.24 14 4.24
|
||
|
31.1 5.66 5.66 5.66 0 4.24 4.24 22.6 7.07 0
|
||
|
5.1 17 8.25 7.07
|
||
|
--> sky = sum_j D_j= 338.587
|
||
|
end{bswap2}: sky = 338.587
|
||
|
selec() -> 'NAfs' obj= 2.57726
|
||
|
- clara sample 4 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 70
|
||
|
[ntt=44, nunfs=3] .. nsel[1:44]= 1 3 8 9 14 15 16 17 19 20 22 23 28 30 31 32 34 35 36 37 38 39 40 41 45 46 47 49 54 56 57 65 66 67 69 70 71 74 76 77 78 84 86 88 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 77.8781;
|
||
|
bswap2(*, s=77.8781), 1. BUILD: new repr. 21
|
||
|
new repr. 32
|
||
|
after build: medoids are 21 32
|
||
|
and min.dist dysma[1:n] are
|
||
|
1.41 7.07 7.81 5.66 5.1 4.12 4.24 14.1 1.41 2.83
|
||
|
4.24 0 12.7 14.1 1.41 6 8.06 33.9 5.66 8.49
|
||
|
0 3.16 5.66 5.66 9.9 8.06 7.07 6 14 4.24
|
||
|
31.1 0 4.24 4.24 4.24 8.49 11.3 2.83 9.06 0
|
||
|
7.07 17 1.41 12.7
|
||
|
--> sky = sum_j D_j= 325.933
|
||
|
end{bswap2}: sky = 325.933
|
||
|
selec() -> 'NAfs' obj= 2.57726
|
||
|
- clara sample 5 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 80
|
||
|
[ntt=44, nunfs=4] .. nsel[1:44]= 1 2 3 5 7 8 11 13 14 20 22 23 26 28 30 31 33 34 37 38 39 41 45 46 47 50 51 52 57 59 61 64 67 71 76 77 79 80 81 82 85 86 87 88 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 6 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 5
|
||
|
[ntt=44, nunfs=5] .. nsel[1:44]= 2 3 4 5 6 8 10 12 19 20 21 23 24 25 29 30 31 32 33 37 39 41 42 45 46 48 50 53 54 59 61 66 68 69 71 72 73 79 80 82 84 85 86 87 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 7 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 17
|
||
|
[ntt=44, nunfs=6] .. nsel[1:44]= 2 3 6 7 8 12 14 16 17 18 20 22 26 27 29 30 31 32 33 35 36 37 42 44 45 46 49 52 54 58 59 61 62 63 65 67 70 74 75 77 78 79 87 88 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 8 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 67
|
||
|
[ntt=44, nunfs=7] .. nsel[1:44]= 2 3 6 7 8 9 11 13 14 18 30 31 32 34 35 37 38 40 43 44 47 48 49 52 54 55 56 58 59 60 66 67 68 70 71 72 73 75 80 83 84 85 87 88 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 85.5102;
|
||
|
bswap2(*, s=85.5102), 1. BUILD: new repr. 17
|
||
|
new repr. 9
|
||
|
after build: medoids are 9 17
|
||
|
and min.dist dysma[1:n] are
|
||
|
21.2 7.07 2.83 17 9.9 5.66 2.83 1.41 0 11.3
|
||
|
14.1 1.41 9.9 9.22 33.9 8.49 0 5.66 8.49 18.4
|
||
|
7.07 13.9 1.41 8.25 13.9 5.66 4.24 1.41 4.24 5.66
|
||
|
4.24 4.24 1.41 8.49 11.3 0 22.6 11.3 1.41 7.07
|
||
|
17 21.2 7.07 12.7
|
||
|
--> sky = sum_j D_j= 384.698
|
||
|
end{bswap2}: sky = 384.698
|
||
|
selec() -> 'NAfs' obj= 2.73432
|
||
|
- clara sample 9 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 67
|
||
|
[ntt=44, nunfs=8] .. nsel[1:44]= 2 4 6 7 8 11 12 13 14 15 17 19 20 21 24 27 29 30 31 33 34 35 36 39 42 45 46 48 50 51 52 54 55 58 60 61 62 65 67 78 80 84 86 88 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 10 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 5
|
||
|
[ntt=44, nunfs=9] .. nsel[1:44]= 1 3 5 6 7 9 10 14 15 16 17 18 19 20 21 23 28 29 30 32 33 36 37 39 40 44 46 47 51 53 54 55 56 57 65 69 70 74 76 81 82 84 86 87 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 11 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 66
|
||
|
[ntt=44, nunfs=10] .. nsel[1:44]= 1 3 4 5 6 11 13 14 15 18 19 21 28 30 31 32 33 34 39 40 41 42 43 46 47 57 58 59 63 65 66 67 71 72 73 74 75 78 79 80 83 84 87 88 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 12 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 21
|
||
|
[ntt=44, nunfs=11] .. nsel[1:44]= 4 5 6 8 9 10 13 14 15 16 17 21 23 25 27 28 30 35 36 41 44 46 47 49 50 54 55 56 57 59 61 62 64 65 66 68 71 72 74 75 76 81 83 84 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 78.3135;
|
||
|
bswap2(*, s=78.3135), 1. BUILD: new repr. 5
|
||
|
new repr. 2
|
||
|
after build: medoids are 2 5
|
||
|
and min.dist dysma[1:n] are
|
||
|
26.2 0 3.61 9.49 0 13.5 11 20.5 13.9 6.32
|
||
|
15 21.6 2.24 32.1 26.6 12.8 12 24.4 17.9 8.6
|
||
|
10.8 18.1 7.21 20.5 14.9 29.4 26.2 3.61 23 21.1
|
||
|
23 3.61 7 16.6 3.61 9.22 9.49 12.6 13 9.85
|
||
|
22.2 14.2 15.7 11
|
||
|
--> sky = sum_j D_j= 623.732
|
||
|
swp new 43 <-> 5 old; decreasing diss. by -205.358
|
||
|
Last swap: new 43 <-> 5 old; decreasing diss. by 1
|
||
|
end{bswap2}: sky = 418.375
|
||
|
selec() -> 'NAfs' obj= 3.17257
|
||
|
- clara sample 13 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 4
|
||
|
[ntt=44, nunfs=12] .. nsel[1:44]= 3 4 5 14 15 16 17 19 20 21 24 25 26 29 30 31 34 35 38 40 41 43 47 49 50 52 55 57 58 60 61 63 64 65 66 68 72 73 74 79 81 83 86 88 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 84.1487;
|
||
|
bswap2(*, s=84.1487), 1. BUILD: new repr. 19
|
||
|
new repr. 34
|
||
|
after build: medoids are 19 34
|
||
|
and min.dist dysma[1:n] are
|
||
|
7.07 9.9 1.41 5.1 4.12 4.24 14.1 1.41 2.83 8.06
|
||
|
5.39 8.49 7.07 14.1 14.1 1.41 8.06 33.9 0 5.66
|
||
|
5.66 8.49 7.07 6 4 7.62 10.3 31.1 1.41 5.66
|
||
|
5.66 15.6 5.66 0 4.24 1.41 0 22.6 2.83 5.1
|
||
|
17 2 1.41 12.7
|
||
|
--> sky = sum_j D_j= 340.1
|
||
|
end{bswap2}: sky = 340.1
|
||
|
selec() -> 'NAfs' obj= 2.57726
|
||
|
- clara sample 14 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 78
|
||
|
[ntt=44, nunfs=13] .. nsel[1:44]= 5 7 8 9 10 11 12 18 19 21 23 27 28 29 31 32 33 35 36 38 39 46 50 51 52 56 57 58 59 60 64 65 66 68 72 73 75 77 78 80 84 86 87 88 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 15 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 73
|
||
|
[ntt=44, nunfs=14] .. nsel[1:44]= 2 3 8 10 18 25 26 27 29 31 33 34 35 41 42 43 44 46 47 48 49 53 54 56 57 58 59 60 63 69 70 71 72 73 75 76 77 79 81 84 85 86 87 88 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 16 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 43
|
||
|
[ntt=44, nunfs=15] .. nsel[1:44]= 5 6 7 8 9 12 14 16 18 22 23 24 27 28 29 30 34 35 36 39 40 41 43 45 56 57 59 60 62 64 65 67 69 70 71 73 74 75 79 81 83 85 86 87 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 75.1665;
|
||
|
bswap2(*, s=75.1665), 1. BUILD: new repr. 15
|
||
|
new repr. 41
|
||
|
after build: medoids are 15 41
|
||
|
and min.dist dysma[1:n] are
|
||
|
12.7 17 2.83 6.4 15.7 5 7.07 9.9 25.5 13.6
|
||
|
14.1 5 15 1.41 0 0 8.06 19.8 8.49 4.24
|
||
|
8.49 19.8 5.66 12.6 9.9 45.3 5.66 14.8 8.49 9.9
|
||
|
2 10 9.9 22.6 25.5 8.49 11.3 5.83 5.1 2.83
|
||
|
0 7.07 15.6 21.2
|
||
|
--> sky = sum_j D_j= 479.721
|
||
|
end{bswap2}: sky = 479.721
|
||
|
selec() -> 'NAfs' obj= 3.31146
|
||
|
- clara sample 17 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 22
|
||
|
[ntt=44, nunfs=16] .. nsel[1:44]= 4 6 9 10 11 12 13 16 19 22 26 27 29 30 33 34 37 38 39 42 43 48 51 54 55 57 60 61 62 63 64 66 69 72 73 75 76 77 78 81 82 85 86 87 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 18 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 39
|
||
|
[ntt=44, nunfs=17] .. nsel[1:44]= 1 4 8 13 15 19 20 23 25 26 27 28 30 31 33 34 36 37 39 41 42 43 44 45 46 47 50 54 55 57 59 60 62 64 65 66 67 72 73 78 79 81 82 85 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 19 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 72
|
||
|
[ntt=44, nunfs=18] .. nsel[1:44]= 1 4 5 6 10 12 13 14 17 18 19 22 23 25 27 30 31 32 33 38 39 40 41 42 44 45 46 48 55 57 58 59 60 61 66 67 69 70 72 74 83 84 85 86 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
- clara sample 20 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 48
|
||
|
[ntt=44, nunfs=19] .. nsel[1:44]= 1 3 4 5 7 10 11 13 14 20 22 23 31 32 33 34 35 36 37 40 41 42 43 44 48 50 52 53 55 56 62 63 68 71 72 73 74 75 81 82 83 84 86 88 -> dysta2() gave dyst_toomany_NA --> new sample.
|
||
|
C clara() -> best sample _found_ ; nbest[1:44] =
|
||
|
c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
||
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
||
|
0,0,0,0)
|
||
|
Error in clara(x, 2, samples = 20, trace = 3) :
|
||
|
Observation 33 has *only* NAs --> omit it for clustering
|
||
|
In addition: Warning message:
|
||
|
In clara(x, 2, samples = 20, trace = 3) :
|
||
|
Distance computations with NAs: using correct instead of pre-2016 wrong formula.
|
||
|
Use 'correct.d=FALSE' to get previous results or set 'correct.d=TRUE' explicitly
|
||
|
to suppress this warning.
|
||
|
> ## To see error message for > 1 missing:
|
||
|
> try(clara(rbind(NA,x), 2))
|
||
|
Error in clara(rbind(NA, x), 2) :
|
||
|
Observations 1,34 have *only* NAs --> omit them for clustering!
|
||
|
In addition: Warning message:
|
||
|
In clara(rbind(NA, x), 2) :
|
||
|
Distance computations with NAs: using correct instead of pre-2016 wrong formula.
|
||
|
Use 'correct.d=FALSE' to get previous results or set 'correct.d=TRUE' explicitly
|
||
|
to suppress this warning.
|
||
|
>
|
||
|
> x <- x[-33,]
|
||
|
> ## still had the ** dysta2() .. OUT" problem {no longer!}
|
||
|
> c2 <- clara(x, 2, samples = 12, trace = 3)
|
||
|
C clara(): (nsam,nran,n) = (44,12,87); 'large_sample',
|
||
|
- clara sample 1 finding 1st... new k{ran}:
|
||
|
.. kall: FALSE,
|
||
|
... nrx [0:1]= 0 0
|
||
|
... nsel[0:0]= 2
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 1 7 8 11 14 16 17 21 22 26 29 30 32 33 34 36 37 39 40 41 43 44 45 46 48 49 51 52 54 55 56 58 62 64 66 68 69 71 74 82 83 84 85 86 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 76.5376;
|
||
|
bswap2(*, s=76.5376), 1. BUILD: new repr. 17
|
||
|
new repr. 40
|
||
|
after build: medoids are 17 40
|
||
|
and min.dist dysma[1:n] are
|
||
|
1.41 17 6.4 2.83 7.07 4.24 14.1 7.28 4.24 7.07
|
||
|
14.1 14.1 4 8.06 33.9 8.49 0 5.66 5.66 14.1
|
||
|
18.4 9.9 6.4 7.07 8 2 8.6 4.24 12.1 4.24
|
||
|
31.1 5.66 15.6 2 4.24 4.24 8.49 0 5.83 0
|
||
|
17 21.2 1.41 7.07
|
||
|
--> sky = sum_j D_j= 384.62
|
||
|
end{bswap2}: sky = 384.62
|
||
|
1st proper sample obj= 7.92464
|
||
|
- clara sample 2 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 82
|
||
|
... nsel[0:0]= 70
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 4 8 10 11 13 15 16 18 20 21 22 23 24 25 31 32 33 34 35 36 37 40 41 43 45 46 48 50 52 55 62 64 65 68 69 71 72 77 81 82 84 85 86 87 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 82.7103;
|
||
|
bswap2(*, s=82.7103), 1. BUILD: new repr. 21
|
||
|
new repr. 40
|
||
|
after build: medoids are 21 40
|
||
|
and min.dist dysma[1:n] are
|
||
|
9.9 6.4 4.47 2.83 1.41 2.24 4.24 11.3 4.47 7.28
|
||
|
4.24 0 5 8.49 1.41 4 8.06 33.9 5.66 8.49
|
||
|
0 5.66 14.1 18.4 6.4 7.07 8 5.66 4.24 4.24
|
||
|
15.6 2 4.24 4.24 8.49 0 22.6 5.1 8.94 0
|
||
|
21.2 1.41 7.07 12.7
|
||
|
--> sky = sum_j D_j= 321.274
|
||
|
end{bswap2}: sky = 321.274
|
||
|
obj= 7.92464
|
||
|
- clara sample 3 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 82
|
||
|
... nsel[0:0]= 38
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 2 5 10 11 14 18 21 22 23 24 25 26 27 29 33 34 36 37 39 41 42 43 45 47 49 50 55 57 58 60 62 64 67 68 71 73 75 77 79 82 83 84 85 87 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 85.5102;
|
||
|
bswap2(*, s=85.5102), 1. BUILD: new repr. 18
|
||
|
new repr. 32
|
||
|
after build: medoids are 18 32
|
||
|
and min.dist dysma[1:n] are
|
||
|
21.2 1.41 4 2.83 5.1 11.3 8.06 4.24 0 5.39
|
||
|
8.49 7.07 13 14.1 8.06 33.9 8.49 0 5.66 14.1
|
||
|
8.49 18.4 8.06 16.3 4 7.21 4.24 1.41 4.47 5.66
|
||
|
15.6 0 1.41 4.24 0 2.83 9.06 7.07 1.41 2
|
||
|
17 21.2 1.41 12.7
|
||
|
--> sky = sum_j D_j= 350.699
|
||
|
Last swap: new 40 <-> 32 old; decreasing diss. by 0.7867
|
||
|
end{bswap2}: sky = 350.699
|
||
|
new best obj= 7.91099
|
||
|
- clara sample 4 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 64
|
||
|
... nsel[0:0]= 85
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 2 4 5 6 8 10 11 12 15 18 21 24 25 26 28 31 33 37 40 42 43 47 49 50 52 54 55 57 58 59 60 61 62 63 64 71 72 73 74 78 79 81 82 86 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 78.3135;
|
||
|
bswap2(*, s=78.3135), 1. BUILD: new repr. 18
|
||
|
new repr. 43
|
||
|
after build: medoids are 18 43
|
||
|
and min.dist dysma[1:n] are
|
||
|
21.2 9.9 1.41 2.83 6.4 4.47 2.83 5 2.24 11.3
|
||
|
7.28 5 8.49 7.07 12.7 1.41 8.06 0 5.66 8.49
|
||
|
18.4 17.8 2 5.66 4.24 12.1 4.24 1.41 5.66 5.66
|
||
|
5.66 5.66 15.6 5.66 2 0 22.6 2.83 5.83 5.1
|
||
|
1.41 8.94 0 7.07
|
||
|
--> sky = sum_j D_j= 297.276
|
||
|
end{bswap2}: sky = 297.276
|
||
|
obj= 7.92464
|
||
|
- clara sample 5 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 64
|
||
|
... nsel[0:0]= 84
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 4 6 9 10 12 13 15 16 17 18 20 21 24 26 27 31 34 35 36 37 40 41 42 43 45 51 52 53 54 55 56 62 64 65 67 68 69 71 72 73 74 77 79 82 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 76.5376;
|
||
|
bswap2(*, s=76.5376), 1. BUILD: new repr. 20
|
||
|
new repr. 44
|
||
|
after build: medoids are 20 44
|
||
|
and min.dist dysma[1:n] are
|
||
|
9.9 2.83 5.66 4.47 5 1.41 2.24 4.24 14.1 11.3
|
||
|
4.47 7.28 5 7.07 15 1.41 33.9 5.66 8.49 0
|
||
|
5.66 14.1 8.49 18.4 6.4 8.6 4.24 14.1 12.1 4.24
|
||
|
31.1 15.6 2 4.24 1.41 4.24 8.49 0 22.6 2.83
|
||
|
5.83 5.1 1.41 0
|
||
|
--> sky = sum_j D_j= 350.799
|
||
|
end{bswap2}: sky = 350.799
|
||
|
obj= 7.92464
|
||
|
- clara sample 6 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 64
|
||
|
... nsel[0:0]= 33
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 1 5 7 9 11 13 14 15 17 18 22 26 27 28 34 35 36 37 38 43 46 47 48 50 51 54 55 56 57 61 63 64 66 69 71 73 74 75 76 77 78 80 81 82 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 82.0244;
|
||
|
bswap2(*, s=82.0244), 1. BUILD: new repr. 18
|
||
|
new repr. 19
|
||
|
after build: medoids are 18 19
|
||
|
and min.dist dysma[1:n] are
|
||
|
1.41 1.41 17 5.66 2.83 1.41 5.66 5.39 14.1 11.3
|
||
|
4.24 7.07 12.6 12.7 33.9 5.66 8.49 0 0 17
|
||
|
7.07 13.6 5.83 9.9 4.47 11.3 4.24 31.1 1.41 5.66
|
||
|
5.66 3.16 4.24 8.49 0 2.83 6.32 8.25 0 8.49
|
||
|
2.83 17 5.1 4.24
|
||
|
--> sky = sum_j D_j= 339.187
|
||
|
end{bswap2}: sky = 339.187
|
||
|
obj= 8.0873
|
||
|
- clara sample 7 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 64
|
||
|
... nsel[0:0]= 26
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 1 3 4 5 9 10 11 18 19 21 23 24 25 30 37 38 39 40 46 47 50 54 55 56 59 62 64 65 66 67 68 70 71 72 75 76 79 80 81 82 83 84 85 86 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 82.7103;
|
||
|
bswap2(*, s=82.7103), 1. BUILD: new repr. 15
|
||
|
new repr. 27
|
||
|
after build: medoids are 15 27
|
||
|
and min.dist dysma[1:n] are
|
||
|
1.41 7.07 9.9 1.41 5.66 4 2.83 11.3 1.41 8.06
|
||
|
0 5.39 8.49 14.1 0 3.16 5.66 5.66 7.07 16.3
|
||
|
7.21 10.3 4.24 31.1 5.66 15.6 0 4.24 4.24 1.41
|
||
|
4.24 11.3 0 22.6 9.06 0 1.41 17 8.25 2
|
||
|
17 21.2 1.41 7.07
|
||
|
--> sky = sum_j D_j= 325.427
|
||
|
end{bswap2}: sky = 325.427
|
||
|
obj= 7.91099
|
||
|
- clara sample 8 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 64
|
||
|
... nsel[0:0]= 3
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 4 5 6 10 12 15 16 17 19 20 21 22 23 24 25 26 27 28 29 31 37 39 41 42 44 45 46 49 50 51 56 57 61 62 63 64 68 73 75 77 78 80 81 85 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 84.1487;
|
||
|
bswap2(*, s=84.1487), 1. BUILD: new repr. 21
|
||
|
new repr. 36
|
||
|
after build: medoids are 21 36
|
||
|
and min.dist dysma[1:n] are
|
||
|
9.9 1.41 2.83 4 6.4 4.12 4.24 14.1 1.41 2.83
|
||
|
8.06 4.24 0 5.39 8.49 7.07 13 12.7 14.1 1.41
|
||
|
0 5.66 14.1 8.49 9.9 8.06 7.07 4 7.21 7.62
|
||
|
31.1 1.41 5.66 15.6 5.66 0 4.24 2.83 9.06 7.07
|
||
|
5.1 17 8.25 1.41
|
||
|
--> sky = sum_j D_j= 312.333
|
||
|
end{bswap2}: sky = 312.333
|
||
|
obj= 7.91099
|
||
|
- clara sample 9 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 64
|
||
|
... nsel[0:0]= 59
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 1 3 5 9 11 13 17 22 23 25 29 31 32 34 37 38 40 42 43 44 47 49 53 55 56 58 62 63 64 66 68 69 70 71 72 73 74 75 76 78 81 82 84 86 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 82.7103;
|
||
|
bswap2(*, s=82.7103), 1. BUILD: new repr. 15
|
||
|
new repr. 29
|
||
|
after build: medoids are 15 29
|
||
|
and min.dist dysma[1:n] are
|
||
|
1.41 7.07 1.41 5.66 2.83 1.41 14.1 4.24 0 8.49
|
||
|
14.1 1.41 6 33.9 0 3.16 5.66 8.49 18.4 9.9
|
||
|
16.3 4 14 4.24 31.1 4.47 15.6 5.66 0 4.24
|
||
|
4.24 8.49 11.3 0 22.6 2.83 7.07 9.06 0 5.1
|
||
|
8.25 2 21.2 7.07
|
||
|
--> sky = sum_j D_j= 356.571
|
||
|
Last swap: new 16 <-> 29 old; decreasing diss. by 0.311473
|
||
|
end{bswap2}: sky = 356.571
|
||
|
obj= 7.91099
|
||
|
- clara sample 10 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 64
|
||
|
... nsel[0:0]= 5
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 2 4 8 11 12 13 22 24 25 26 27 29 31 34 36 37 39 41 42 44 47 48 49 50 53 57 58 59 60 61 62 63 64 66 67 70 71 72 75 77 79 82 84 87 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 85.5102;
|
||
|
bswap2(*, s=85.5102), 1. BUILD: new repr. 16
|
||
|
new repr. 33
|
||
|
after build: medoids are 16 33
|
||
|
and min.dist dysma[1:n] are
|
||
|
21.2 9.9 7.81 2.83 6.4 1.41 4.24 5.39 8.49 7.07
|
||
|
13 14.1 1.41 33.9 8.49 0 5.66 14.1 8.49 9.9
|
||
|
16.3 6 4 7.21 14 1.41 4.47 5.66 5.66 5.66
|
||
|
15.6 5.66 0 4.24 1.41 11.3 0 22.6 9.06 7.07
|
||
|
1.41 2 21.2 12.7
|
||
|
--> sky = sum_j D_j= 368.598
|
||
|
Last swap: new 42 <-> 33 old; decreasing diss. by 0.115684
|
||
|
end{bswap2}: sky = 368.598
|
||
|
obj= 7.91099
|
||
|
- clara sample 11 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 64
|
||
|
... nsel[0:0]= 30
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 2 7 8 9 10 16 17 20 22 23 24 26 27 29 34 35 36 37 38 41 44 47 48 49 50 51 52 53 54 59 60 61 63 64 67 68 69 75 76 78 80 81 84 85 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 80.9938;
|
||
|
bswap2(*, s=80.9938), 1. BUILD: new repr. 18
|
||
|
new repr. 19
|
||
|
after build: medoids are 18 19
|
||
|
and min.dist dysma[1:n] are
|
||
|
21.2 17 7.28 5.66 1.41 4.24 14.1 5.1 4.24 0
|
||
|
8.54 7.07 12.6 14.1 33.9 5.66 8.49 0 0 14.1
|
||
|
9.9 13.6 5.83 5.83 9.9 4.47 4.24 17 11.3 5.66
|
||
|
5.66 5.66 5.66 3.16 1.41 4.24 8.49 8.25 0 2.83
|
||
|
17 5.1 21.2 1.41
|
||
|
--> sky = sum_j D_j= 362.717
|
||
|
end{bswap2}: sky = 362.717
|
||
|
obj= 8.0873
|
||
|
- clara sample 12 finding 1st... new k{ran}:
|
||
|
.. kall: T,
|
||
|
... nrx [0:1]= 37 64
|
||
|
... nsel[0:0]= 44
|
||
|
[ntt=43, nunfs=0] .. nsel[1:44]= 1 2 3 7 11 12 14 18 19 20 21 28 30 31 32 33 34 37 38 39 40 42 49 51 52 53 55 59 63 64 68 69 70 72 74 76 77 78 79 81 84 85 86 87 -> dysta2();
|
||
|
clara -> s:= max{dys[1..946]} = 80.9938;
|
||
|
bswap2(*, s=80.9938), 1. BUILD: new repr. 18
|
||
|
new repr. 30
|
||
|
after build: medoids are 18 30
|
||
|
and min.dist dysma[1:n] are
|
||
|
1.41 21.2 7.07 17 2.83 6.4 5.1 11.3 1.41 2.83
|
||
|
8.06 12.7 14.1 1.41 6 8.06 33.9 0 3.16 5.66
|
||
|
5.66 8.49 4 7.62 4.24 14 4.24 5.66 5.66 0
|
||
|
4.24 8.49 11.3 22.6 7.07 0 7.07 5.1 1.41 8.25
|
||
|
21.2 1.41 7.07 12.7
|
||
|
--> sky = sum_j D_j= 347.279
|
||
|
end{bswap2}: sky = 347.279
|
||
|
obj= 7.91099
|
||
|
C clara() -> best sample _found_ ; nbest[1:44] =
|
||
|
c(2,5,10,11,14,18,21,22,23,24,25,26,27,29,33,34,36,37,39,41,
|
||
|
42,43,45,47,49,50,55,57,58,60,62,64,67,68,71,73,75,77,79,82,
|
||
|
83,84,85,87)
|
||
|
resul(), black() and return() from C.
|
||
|
Warning message:
|
||
|
In clara(x, 2, samples = 12, trace = 3) :
|
||
|
Distance computations with NAs: using correct instead of pre-2016 wrong formula.
|
||
|
Use 'correct.d=FALSE' to get previous results or set 'correct.d=TRUE' explicitly
|
||
|
to suppress this warning.
|
||
|
> c2. <- clara(x, 2, samples = 12, trace = 1, correct.d=TRUE)
|
||
|
C clara(): (nsam,nran,n) = (44,12,87); 'large_sample',
|
||
|
- clara sample 1 [ntt=43, nunfs=0] -> dysta2(); obj= 7.92464
|
||
|
- clara sample 2 [ntt=43, nunfs=0] -> dysta2(); obj= 7.92464
|
||
|
- clara sample 3 [ntt=43, nunfs=0] -> dysta2(); obj= 7.91099
|
||
|
- clara sample 4 [ntt=43, nunfs=0] -> dysta2(); obj= 7.92464
|
||
|
- clara sample 5 [ntt=43, nunfs=0] -> dysta2(); obj= 7.92464
|
||
|
- clara sample 6 [ntt=43, nunfs=0] -> dysta2(); obj= 8.0873
|
||
|
- clara sample 7 [ntt=43, nunfs=0] -> dysta2(); obj= 7.91099
|
||
|
- clara sample 8 [ntt=43, nunfs=0] -> dysta2(); obj= 7.91099
|
||
|
- clara sample 9 [ntt=43, nunfs=0] -> dysta2(); obj= 7.91099
|
||
|
- clara sample 10 [ntt=43, nunfs=0] -> dysta2(); obj= 7.91099
|
||
|
- clara sample 11 [ntt=43, nunfs=0] -> dysta2(); obj= 8.0873
|
||
|
- clara sample 12 [ntt=43, nunfs=0] -> dysta2(); obj= 7.91099
|
||
|
C clara() -> best sample _found_ resul(), black() and return() from C.
|
||
|
> p2g <- pam(daisy(x,"gower"), k=2, trace = 3)
|
||
|
pam()'s bswap(*, s=0.785, pamonce=0): build 2 medoids:
|
||
|
new repr. 37
|
||
|
new repr. 64
|
||
|
after build: medoids are 37 64
|
||
|
and min.dist dysma[1:n] are
|
||
|
0.02 0.3 0.1 0.131 0.02 0.04 0.24 0.0898 0.08 0.0238
|
||
|
0.04 0.0738 0.02 0.056 0.046 0.06 0.2 0.16 0.02 0.0319
|
||
|
0.0817 0.06 0 0.0498 0.12 0.1 0.136 0.18 0.2 0.2
|
||
|
0.02 0.06 0.0576 0.48 0.08 0.12 0 0.0279 0.08 0.08
|
||
|
0.2 0.12 0.119 0.131 0.0938 0.1 0.185 0.06 0.04 0.0838
|
||
|
0.0717 0.06 0.0833 0.12 0.06 0.388 0.02 0.0438 0.08 0.08
|
||
|
0.08 0.22 0.08 0 0.06 0.06 0.02 0.06 0.12 0.16
|
||
|
0 0.32 0.04 0.0798 0.096 0 0.076 0.0398 0.02 0.24
|
||
|
0.0676 0.02 0.24 0.3 0.02 0.1 0.18
|
||
|
end{bswap()}, end{cstat()}
|
||
|
> if(FALSE) { ## disabled clara(*, "gower") for now (2023-11-30):
|
||
|
+ c2g <- clara(x, 2, samples = 12, sampsize=nrow(x), trace = 2, metric = "gower", pamLike=TRUE, correct.d=TRUE)
|
||
|
+ (icall <- which(names(c2) == "call"))
|
||
|
+ ## c2g and p2g are *quite* different !
|
||
|
+ table(c2g$clustering,
|
||
|
+ p2g$clustering)
|
||
|
+ ## 1 2
|
||
|
+ ## 1 40 32
|
||
|
+ ## 2 15 0 << not *one* pair of {2,2} !?!
|
||
|
+
|
||
|
+ stopifnot(exprs = {
|
||
|
+ all.equal(c2[-icall], c2.[-icall])
|
||
|
+ })
|
||
|
+ }# no "gower" for now
|
||
|
>
|
||
|
> data(xclara)
|
||
|
> suppressWarnings(RNGversion("3.5.0")) # back compatibility of results
|
||
|
> set.seed(123)
|
||
|
> xclara[sample(nrow(xclara), 50),] <- NA
|
||
|
> try( clara(xclara, k = 3) ) #-> "nice" error message {.. first 12 missing obs} :
|
||
|
Error in clara(xclara, k = 3) :
|
||
|
50 observations (74,126,137,308,411,423,438,451,642,686,689,735 ...) have *only* NAs --> omit them for clustering!
|
||
|
In addition: Warning message:
|
||
|
In clara(xclara, k = 3) :
|
||
|
Distance computations with NAs: using correct instead of pre-2016 wrong formula.
|
||
|
Use 'correct.d=FALSE' to get previous results or set 'correct.d=TRUE' explicitly
|
||
|
to suppress this warning.
|
||
|
> ## Error in clara(xclara, k = 3) :
|
||
|
> ## 50 observations (74,126,137,308,411,423,438,451,642,686,689,735 ...) have *only* NAs
|
||
|
> ## --> omit them for clustering!
|
||
|
>
|
||
|
> proc.time()
|
||
|
user system elapsed
|
||
|
0.149 0.039 0.205
|