69 lines
2.3 KiB
R
Raw Normal View History

2025-01-12 00:52:51 +08:00
## some tests of inverse-gaussian GLMs based on a file supplied by
## David Firth, Feb 2009.
options(digits=5)
have_MASS <- requireNamespace('MASS', quietly = TRUE)
## Data from Whitmore, G A (1986), Inverse Gaussian Ratio Estimation.
## Applied Statistics 35(1), 8-15.
##
## A "real, but disguised" set of data (Whitmore, 1986, p8).
##
## For each of 20 products, x is projected sales and y is actual sales.
x <- c(5959, 3534, 2641, 1965, 1738, 1182, 667, 613, 610, 549,
527, 353, 331, 290, 253, 193, 156, 133, 122, 114)
y <- c(5673, 3659, 2565, 2182, 1839, 1236, 918, 902, 756, 500,
487, 463, 225, 257, 311, 212, 166, 123, 198, 99)
## Whitmore's model (2.4) is
fit <- glm(y ~ x - 1, weights = x^2,
family = inverse.gaussian(link = "identity"),
epsilon = 1e-12)
fit
coef(summary(fit))
## Alternatively, use the explicit formula that's available for the MLE
## in this example. It's just a ratio estimate:
(beta.exact <- sum(y)/sum(x))
stopifnot(all.equal(beta.exact, as.vector(coef(fit))))
## and for a confidence interval via confint
if(have_MASS) {
ci <- confint(fit, 1, level = 0.95)
print(ci)
}
## and via asymptotic normality
sterr <- coef(summary(fit))[, "Std. Error"]
coef(fit) + (1.96 * sterr * c(-1, 1))
## David suggested the use of an inverse link
fit2 <- glm(y ~ I(1/x) - 1, weights = x^2,
family = inverse.gaussian(link = "inverse"),
epsilon = 1e-12)
coef(summary(fit2))
## which gives the same CIs both ways
if(have_MASS) {
ci1 <- rev(1/(confint(fit2, 1, level = 0.95)))
print(ci1)
sterr <- (summary(fit2)$coefficients)[, "Std. Error"]
ci2 <- 1/(coef(fit2) - (1.96 * sterr * c(-1, 1)))
print(ci2)
stopifnot(all.equal(as.vector(ci), as.vector(ci1), tolerance = 1e-5),
all.equal(as.vector(ci), ci2, tolerance = 1e-3))
}
## because the log likelihood for 1/beta is exactly quadratic.
## The approximate intervals above differ slightly from the exact
## confidence interval given in Whitmore (1986) -- as is to be
## expected (they are based on asymptotic approximations, not the
## exact pivot).
## Now simulate from this model
if(requireNamespace("SuppDists")) {
print( ys <- simulate(fit, nsim = 3, seed = 1) )
for(i in seq_len(3))
print(coef(summary(update(fit, ys[, i] ~ .))))
}