183 lines
6.3 KiB
R
183 lines
6.3 KiB
R
|
### Testing positive definite matrices
|
||
|
|
||
|
## for R_DEFAULT_PACKAGES=NULL :
|
||
|
library(stats)
|
||
|
library(utils)
|
||
|
|
||
|
library(Matrix)
|
||
|
source(system.file("test-tools.R", package = "Matrix"))# identical3() etc
|
||
|
cat("doExtras:",doExtras,"\n")
|
||
|
|
||
|
h9 <- Hilbert(9)
|
||
|
stopifnot(c(0,0) == dim(Hilbert(0)),
|
||
|
c(9,9) == dim(h9),
|
||
|
identical(h9@factors, list()))
|
||
|
str(h9)# no 'factors' 32b: -96.73694669 2.08e-8
|
||
|
assert.EQ.(c(determinant(h9)$modulus), -96.7369487, tol = 8e-8)
|
||
|
## 64b: -96.73695078 2.15e-8 then 6.469e-8
|
||
|
|
||
|
## determinant() now working via chol(): ==> h9 now has factorization
|
||
|
stopifnot(names(h9@factors) == "Cholesky",
|
||
|
identical(ch9 <- Cholesky(h9, perm = FALSE), h9@factors$Cholesky))
|
||
|
str(f9 <- as(ch9, "dtrMatrix"))
|
||
|
round(f9, 3) ## round() preserves 'triangular' !
|
||
|
stopifnot(all.equal(rcond(h9), 9.0938e-13),
|
||
|
all.equal(rcond(f9), 9.1272e-7, tolerance = 1e-6))# more precision fails
|
||
|
options(digits=4)
|
||
|
(cf9 <- crossprod(f9))# looks the same as h9 :
|
||
|
assert.EQ.mat(h9, as(cf9,"matrix"), tol=1e-15)
|
||
|
|
||
|
h9. <- round(h9, 2) # dpo->dsy
|
||
|
h9p <- pack(h9)
|
||
|
ch9p <- Cholesky(h9p, perm = FALSE)
|
||
|
stopifnot(identical(ch9p, h9p@factors$pCholesky),
|
||
|
identical(names(h9p@factors), c("Cholesky", "pCholesky")))
|
||
|
h4 <- h9.[1:4, 1:4] # this and the next
|
||
|
h9.[1,1] <- 10 # had failed in 0.995-14
|
||
|
h9p[1,1] <- 10
|
||
|
stopifnotValid(h9., "symmetricMatrix")
|
||
|
stopifnotValid(h9p, "symmetricMatrix")
|
||
|
stopifnotValid(h4, "symmetricMatrix")
|
||
|
|
||
|
h9p[1,2] <- 99
|
||
|
stopifnot(class(h9p) == "dgeMatrix", h9p[1,1:2] == c(10,99))
|
||
|
|
||
|
str(h9p <- as(h9, "dppMatrix"))# {again}
|
||
|
h6 <- h9[1:6,1:6]
|
||
|
stopifnot(all(h6 == Hilbert(6)), length(h6@factors) == 0)
|
||
|
stopifnotValid(th9p <- t(h9p), "dppMatrix")
|
||
|
stopifnotValid(h9p@factors$Cholesky,"Cholesky")
|
||
|
H6 <- as(h6, "packedMatrix")
|
||
|
pp6 <- as(H6, "dppMatrix")
|
||
|
po6 <- as(pp6, "dpoMatrix")
|
||
|
hs <- as(h9p, "dspMatrix")
|
||
|
stopifnot(names(H6@factors) == "pCholesky",
|
||
|
names(pp6@factors) == "pCholesky",
|
||
|
names(hs@factors) == "Cholesky") # for now
|
||
|
chol(hs) # and that is cached in 'hs' too :
|
||
|
stopifnot(names(hs@factors) %in% c("Cholesky","pCholesky"),
|
||
|
all.equal(h9, crossprod(as(hs@factors$pCholesky, "dtpMatrix")),
|
||
|
tolerance = 1e-13),
|
||
|
all.equal(h9, crossprod(as(hs@factors$ Cholesky, "dtrMatrix")),
|
||
|
tolerance = 1e-13))
|
||
|
|
||
|
hs@x <- 1/h9p@x # is not pos.def. anymore
|
||
|
validObject(hs) # "but" this does not check
|
||
|
stopifnot(diag(hs) == seq(1, by = 2, length.out = 9))
|
||
|
|
||
|
s9 <- solve(h9p, seq(nrow(h9p)))
|
||
|
signif(t(s9)/10000, 4)# only rounded numbers are platform-independent
|
||
|
(I9 <- h9p %*% s9)
|
||
|
m9 <- as.matrix(1:9)
|
||
|
stopifnot(all.equal(m9, as(I9, "matrix"), tolerance = 2e-9))
|
||
|
|
||
|
### Testing nearPD() --- this is partly in ../man/nearPD.Rd :
|
||
|
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
|
||
|
0.477, 1, 0.516, 0.233, 0.682, 0.75,
|
||
|
0.644, 0.516, 1, 0.599, 0.581, 0.742,
|
||
|
0.478, 0.233, 0.599, 1, 0.741, 0.8,
|
||
|
0.651, 0.682, 0.581, 0.741, 1, 0.798,
|
||
|
0.826, 0.75, 0.742, 0.8, 0.798, 1),
|
||
|
nrow = 6, ncol = 6)
|
||
|
|
||
|
nL <-
|
||
|
list(r = nearPD(pr, conv.tol = 1e-7), # default
|
||
|
r.1 = nearPD(pr, conv.tol = 1e-7, corr = TRUE),
|
||
|
rs = nearPD(pr, conv.tol = 1e-7, doDykstra=FALSE),
|
||
|
rs1 = nearPD(pr, conv.tol = 1e-7, doDykstra=FALSE, corr = TRUE),
|
||
|
rH = nearPD(pr, conv.tol = 1e-15),
|
||
|
rH.1= nearPD(pr, conv.tol = 1e-15, corr = TRUE))
|
||
|
|
||
|
sapply(nL, `[`, c("iterations", "normF"))
|
||
|
|
||
|
allnorms <- function(d) vapply(c("1","I","F","M","2"),
|
||
|
norm, x = d, double(1))
|
||
|
|
||
|
## "F" and "M" distances are larger for the (corr=TRUE) constrained:
|
||
|
100 * sapply(nL, function(rr) allnorms((pr - rr $ mat)))
|
||
|
|
||
|
## But indeed, the 'corr = TRUE' constraint yield a better solution,
|
||
|
## if you need the constraint : cov2cor() does not just fix it up :
|
||
|
100 * (nn <- sapply(nL, function(rr) allnorms((pr - cov2cor(rr $ mat)))))
|
||
|
|
||
|
stopifnot(
|
||
|
all.equal(nn["1",],
|
||
|
c(r =0.0999444286984696, r.1= 0.0880468666522317,
|
||
|
rs=0.0999444286984702, rs1= 0.0874614179943388,
|
||
|
rH=0.0999444286984696, rH.1=0.0880468927726625),
|
||
|
tolerance=1e-9))
|
||
|
|
||
|
nr <- nL $rH.1 $mat
|
||
|
stopifnot(
|
||
|
all.equal(nr[lower.tri(nr)],
|
||
|
c(0.4877861230299, 0.6429309061748, 0.4904554299278, 0.6447150779852,
|
||
|
0.8082100656035, 0.514511537243, 0.2503412693503, 0.673249718642,
|
||
|
0.7252316891977, 0.5972811755863, 0.5818673040157, 0.7444549621769,
|
||
|
0.7308954865819, 0.7713984381710, 0.8124321235679),
|
||
|
tolerance = 1e-9))
|
||
|
showProc.time()
|
||
|
|
||
|
|
||
|
suppressWarnings(RNGversion("3.5.0")); set.seed(27)
|
||
|
m9 <- h9 + rnorm(9^2)/1000 ; m9 <- (m9 + t(m9))/2
|
||
|
nm9 <- nearPD(m9)
|
||
|
showProc.time()
|
||
|
|
||
|
nRep <- if(doExtras) 50 else 4
|
||
|
CPU <- 0
|
||
|
for(M in c(5, 12))
|
||
|
for(i in 1:nRep) {
|
||
|
m <- matrix(round(rnorm(M^2),2), M, M)
|
||
|
m <- m + t(m)
|
||
|
diag(m) <- pmax(0, diag(m)) + 1
|
||
|
m <- cov2cor(m)
|
||
|
CPU <- CPU + system.time(n.m <- nearPD(m, base.matrix=TRUE))[1]
|
||
|
X <- n.m$mat
|
||
|
stopifnot(all.equal(X, (X + t(X))/2, tolerance = 8*.Machine$double.eps),
|
||
|
all.equal(eigen(n.m$mat, only.values=TRUE)$values,
|
||
|
n.m$eigenvalues, tolerance = 4e-8))
|
||
|
}
|
||
|
cat('Time elapsed for ',nRep, 'nearPD(): ', CPU,'\n')
|
||
|
showProc.time()
|
||
|
|
||
|
## cov2cor()
|
||
|
m <- diag(6:1) %*% as(pr,"matrix") %*% diag(6:1) # so we can "vector-index"
|
||
|
m[upper.tri(m)] <- 0
|
||
|
ltm <- which(lower.tri(m))
|
||
|
ne <- length(ltm)
|
||
|
set.seed(17)
|
||
|
m[ltm[sample(ne, 3/4*ne)]] <- 0
|
||
|
m <- (m + t(m))/2 # now is a covariance matrix with many 0 entries
|
||
|
(spr <- Matrix(m))
|
||
|
cspr <- cov2cor(spr)
|
||
|
ev <- eigen(cspr, only.values = TRUE)$values
|
||
|
stopifnot(is(spr, "dsCMatrix"),
|
||
|
is(cspr,"dsCMatrix"),
|
||
|
all.equal(ev, c(1.5901626099, 1.1902658504, 1, 1,
|
||
|
0.80973414959, 0.40983739006), tolerance=1e-10))
|
||
|
|
||
|
x <- c(2,1,1,2)
|
||
|
mM <- Matrix(x, 2,2, dimnames=rep( list(c("A","B")), 2))# dsy
|
||
|
mM
|
||
|
stopifnot(length(mM@factors)== 0)
|
||
|
(po <- as(mM, "dpoMatrix")) # still has dimnames
|
||
|
mm <- as(mM, "matrix")
|
||
|
msy <- as(mm, "symmetricMatrix")
|
||
|
stopifnot(Qidentical(mM, msy),
|
||
|
length(mM @factors)== 1,
|
||
|
length(msy@factors)== 0)
|
||
|
|
||
|
c1 <- as(mm, "corMatrix")
|
||
|
c2 <- as(mM, "corMatrix")
|
||
|
c3 <- as(po, "corMatrix")
|
||
|
(co.x <- matrix(x/2, 2,2))
|
||
|
checkMatrix(c1)
|
||
|
assert.EQ.mat(c1, co.x)
|
||
|
assert.EQ.mat(c2, co.x) # failed in Matrix 0.999375-9, because of
|
||
|
## the wrong automatic "dsyMatrix" -> "corMatrix" coerce method
|
||
|
stopifnot(identical(dimnames(c1), dimnames(mM)),
|
||
|
all.equal(c1, c3, tolerance =1e-15))
|
||
|
|
||
|
showProc.time()
|
||
|
|