259 lines
6.9 KiB
R
259 lines
6.9 KiB
R
|
#-*- R -*-
|
||
|
|
||
|
## Script from Fourth Edition of `Modern Applied Statistics with S'
|
||
|
|
||
|
# Chapter 14 Time Series
|
||
|
|
||
|
library(MASS)
|
||
|
pdf(file="ch14.pdf", width=8, height=6, pointsize=9)
|
||
|
options(width=65, digits=5)
|
||
|
|
||
|
lh
|
||
|
deaths
|
||
|
#tspar(deaths)
|
||
|
tsp(deaths)
|
||
|
start(deaths)
|
||
|
end(deaths)
|
||
|
frequency(deaths)
|
||
|
cycle(deaths)
|
||
|
ts.plot(lh)
|
||
|
ts.plot(deaths, mdeaths, fdeaths,
|
||
|
lty = c(1, 3, 4), xlab = "year", ylab = "deaths")
|
||
|
|
||
|
aggregate(deaths, 4, sum)
|
||
|
aggregate(deaths, 1, mean)
|
||
|
|
||
|
|
||
|
# 14.1 Second-order summaries
|
||
|
|
||
|
acf(lh)
|
||
|
acf(lh, type = "covariance")
|
||
|
acf(deaths)
|
||
|
acf(ts.union(mdeaths, fdeaths))
|
||
|
|
||
|
par(mfrow = c(2, 2))
|
||
|
spectrum(lh)
|
||
|
spectrum(deaths)
|
||
|
|
||
|
par(mfrow = c(2, 2))
|
||
|
spectrum(lh)
|
||
|
spectrum(lh, spans = 3)
|
||
|
spectrum(lh, spans = c(3, 3))
|
||
|
spectrum(lh, spans = c(3, 5))
|
||
|
|
||
|
spectrum(deaths)
|
||
|
spectrum(deaths, spans = c(3, 3))
|
||
|
spectrum(deaths, spans = c(3, 5))
|
||
|
spectrum(deaths, spans = c(5, 7))
|
||
|
|
||
|
par(mfrow = c(1, 2))
|
||
|
cpgram(lh)
|
||
|
cpgram(deaths)
|
||
|
par(mfrow = c(1, 1))
|
||
|
|
||
|
|
||
|
# 14.2 ARIMA models
|
||
|
|
||
|
|
||
|
# ts.sim <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 200)
|
||
|
|
||
|
acf(lh, type = "partial")
|
||
|
acf(deaths, type = "partial")
|
||
|
|
||
|
lh.ar1 <- ar(lh, FALSE, 1)
|
||
|
cpgram(lh.ar1$resid, main = "AR(1) fit to lh")
|
||
|
lh.ar <- ar(lh, order.max = 9)
|
||
|
lh.ar$order
|
||
|
lh.ar$aic
|
||
|
cpgram(lh.ar$resid, main = "AR(3) fit to lh")
|
||
|
|
||
|
(lh.arima1 <- arima(lh, order = c(1,0,0)))
|
||
|
tsdiag(lh.arima1)
|
||
|
(lh.arima3 <- arima(lh, order = c(3,0,0)))
|
||
|
tsdiag(lh.arima3)
|
||
|
(lh.arima11 <- arima(lh, order = c(1,0,1)))
|
||
|
|
||
|
lh.fore <- predict(lh.arima3, 12)
|
||
|
ts.plot(lh, lh.fore$pred, lh.fore$pred + 2*lh.fore$se,
|
||
|
lh.fore$pred - 2*lh.fore$se, lty = c(1,2,3,3))
|
||
|
|
||
|
|
||
|
# 14.3 Seasonality
|
||
|
|
||
|
deaths.stl <- stl(deaths, "periodic")
|
||
|
dsd <- deaths.stl$time.series[, "trend"] +
|
||
|
deaths.stl$time.series[, "remainder"]
|
||
|
#ts.plot(deaths, deaths.stl$sea, deaths.stl$rem)
|
||
|
ts.plot(deaths, deaths.stl$time.series[, "seasonal"], dsd,
|
||
|
gpars = list(lty = c(1, 3, 2)))
|
||
|
|
||
|
par(mfrow = c(2, 3))
|
||
|
#dsd <- deaths.stl$rem
|
||
|
ts.plot(dsd)
|
||
|
|
||
|
acf(dsd)
|
||
|
acf(dsd, type = "partial")
|
||
|
spectrum(dsd, span = c(3, 3))
|
||
|
cpgram(dsd)
|
||
|
dsd.ar <- ar(dsd)
|
||
|
dsd.ar$order
|
||
|
dsd.ar$aic
|
||
|
dsd.ar$ar
|
||
|
cpgram(dsd.ar$resid, main = "AR(1) residuals")
|
||
|
par(mfrow = c(1, 1))
|
||
|
|
||
|
deaths.diff <- diff(deaths, 12)
|
||
|
acf(deaths.diff, 30)
|
||
|
acf(deaths.diff, 30, type = "partial")
|
||
|
ar(deaths.diff)
|
||
|
# this suggests the seasonal effect is still present.
|
||
|
(deaths.arima1 <- arima(deaths, order = c(2,0,0),
|
||
|
seasonal = list(order = c(0,1,0), period = 12)) )
|
||
|
tsdiag(deaths.arima1, gof.lag = 30)
|
||
|
# suggests need a seasonal AR term
|
||
|
(deaths.arima2 <- arima(deaths, order = c(2,0,0),
|
||
|
list(order = c(1,0,0), period = 12)) )
|
||
|
tsdiag(deaths.arima2, gof.lag = 30)
|
||
|
cpgram(deaths.arima2$resid)
|
||
|
(deaths.arima3 <- arima(deaths, order = c(2,0,0),
|
||
|
list(order = c(1,1,0), period = 12)) )
|
||
|
tsdiag(deaths.arima3, gof.lag = 30)
|
||
|
|
||
|
par(mfrow = c(3, 1))
|
||
|
nott <- window(nottem, end = c(1936, 12))
|
||
|
ts.plot(nott)
|
||
|
nott.stl <- stl(nott, "period")
|
||
|
ts.plot(nott.stl$time.series[, c("remainder", "seasonal")],
|
||
|
gpars = list(ylim = c(-15, 15), lty = c(1, 3)))
|
||
|
nott.stl <- stl(nott, 5)
|
||
|
ts.plot(nott.stl$time.series[, c("remainder", "seasonal")],
|
||
|
ylim = c(-15, 15), lty = c(1, 3))
|
||
|
|
||
|
par(mfrow = c(1, 1))
|
||
|
boxplot(split(nott, cycle(nott)), names = month.abb)
|
||
|
|
||
|
nott[110] <- 35
|
||
|
nott.stl <- stl(nott, "period")
|
||
|
nott1 <- nott.stl$time.series[, "trend"] + nott.stl$time.series[, "remainder"]
|
||
|
acf(nott1)
|
||
|
acf(nott1, type = "partial")
|
||
|
cpgram(nott1)
|
||
|
ar(nott1)$aic
|
||
|
plot(0:23, ar(nott1)$aic, xlab = "order", ylab = "AIC",
|
||
|
main = "AIC for AR(p)")
|
||
|
(nott1.ar1 <- arima(nott1, order = c(1,0,0)))
|
||
|
nott1.fore <- predict(nott1.ar1, 36)
|
||
|
nott1.fore$pred <- nott1.fore$pred +
|
||
|
as.vector(nott.stl$time.series[1:36, "seasonal"])
|
||
|
ts.plot(window(nottem, 1937), nott1.fore$pred,
|
||
|
nott1.fore$pred+2*nott1.fore$se,
|
||
|
nott1.fore$pred-2*nott1.fore$se, lty = c(3, 1, 2, 2))
|
||
|
title("via Seasonal Decomposition")
|
||
|
|
||
|
acf(diff(nott,12), 30)
|
||
|
acf(diff(nott,12), 30, type = "partial")
|
||
|
cpgram(diff(nott, 12))
|
||
|
(nott.arima1 <- arima(nott, order = c(1,0,0),
|
||
|
list(order = c(2,1,0), period = 12)) )
|
||
|
tsdiag(nott.arima1, gof.lag = 30)
|
||
|
(nott.arima2 <- arima(nott, order = c(0,0,2),
|
||
|
list(order = c(0,1,2), period = 12)) )
|
||
|
tsdiag(nott.arima2, gof.lag = 30)
|
||
|
(nott.arima3 <- arima(nott, order = c(1,0,0),
|
||
|
list(order = c(0,1,2), period = 12)) )
|
||
|
tsdiag(nott.arima3, gof.lag = 30)
|
||
|
|
||
|
nott.fore <- predict(nott.arima3, 36)
|
||
|
ts.plot(window(nottem, 1937), nott.fore$pred,
|
||
|
nott.fore$pred+2*nott.fore$se,
|
||
|
nott.fore$pred-2*nott.fore$se, lty = c(3, 1, 2, 2))
|
||
|
title("via Seasonal ARIMA model")
|
||
|
|
||
|
|
||
|
# 14.6 Regression with autocorrelated errors
|
||
|
|
||
|
attach(beav1)
|
||
|
beav1$hours <- 24*(day-346) + trunc(time/100) + (time%%100)/60
|
||
|
detach()
|
||
|
attach(beav2)
|
||
|
beav2$hours <- 24*(day-307) + trunc(time/100) + (time%%100)/60
|
||
|
detach()
|
||
|
par(mfrow = c(2, 2))
|
||
|
plot(beav1$hours, beav1$temp, type = "l", xlab = "time",
|
||
|
ylab = "temperature", main = "Beaver 1")
|
||
|
usr <- par("usr"); usr[3:4] <- c(-0.2, 8); par(usr = usr)
|
||
|
lines(beav1$hours, beav1$activ, type = "s", lty = 2)
|
||
|
plot(beav2$hours, beav2$temp, type = "l", xlab = "time",
|
||
|
ylab = "temperature", main = "Beaver 2")
|
||
|
usr <- par("usr"); usr[3:4] <- c(-0.2, 8); par(usr = usr)
|
||
|
lines(beav2$hours, beav2$activ, type = "s", lty = 2)
|
||
|
|
||
|
attach(beav2)
|
||
|
temp2 <- ts(temp, start = 8+2/3, frequency = 6)
|
||
|
activ2 <- ts(activ, start = 8+2/3, frequency = 6)
|
||
|
acf(temp2[activ2 == 0])
|
||
|
acf(temp2[activ2 == 1]) # also look at PACFs
|
||
|
acf(temp2[activ2 == 0], type = "partial")
|
||
|
acf(temp2[activ2 == 1], type = "partial")
|
||
|
ar(temp2[activ2 == 0])
|
||
|
ar(temp2[activ2 == 1])
|
||
|
par(mfrow = c(1, 1))
|
||
|
detach()
|
||
|
rm(temp2, activ2)
|
||
|
|
||
|
library(nlme)
|
||
|
beav2.gls <- gls(temp ~ activ, data = beav2,
|
||
|
corr = corAR1(0.8), method = "ML")
|
||
|
summary(beav2.gls)
|
||
|
summary(update(beav2.gls, subset = 6:100))
|
||
|
|
||
|
arima(beav2$temp, c(1,0,0), xreg = beav2$activ)
|
||
|
|
||
|
attach(beav1)
|
||
|
temp1 <- ts(c(temp[1:82], NA, temp[83:114]), start = 9.5, frequency = 6)
|
||
|
activ1 <- ts(c(activ[1:82], NA, activ[83:114]), start = 9.5, frequency = 6)
|
||
|
acf(temp1[1:53])
|
||
|
acf(temp1[1:53], type = "partial")
|
||
|
ar(temp1[1:53])
|
||
|
|
||
|
act <- c(rep(0, 10), activ1)
|
||
|
beav1b <- data.frame(Time = time(temp1), temp = as.vector(temp1),
|
||
|
act = act[11:125], act1 = act[10:124],
|
||
|
act2 = act[9:123], act3 = act[8:122])
|
||
|
detach()
|
||
|
rm(temp1, activ1)
|
||
|
|
||
|
summary(gls(temp ~ act + act1 + act2 + act3,
|
||
|
data = beav1b, na.action = na.omit,
|
||
|
corr = corCAR1(0.82^6, ~Time), method = "ML"))
|
||
|
|
||
|
arima(beav1b$temp, c(1, 0, 0), xreg = beav1b[, 3:6])
|
||
|
|
||
|
|
||
|
# 14.6 Models for financial time series
|
||
|
|
||
|
plot(SP500, type = "l", xlab = "", ylab = "returns (%)", xaxt = "n", las = 1)
|
||
|
axis(1, at = c(0, 254, 507, 761, 1014, 1266, 1518, 1772, 2025, 2277,
|
||
|
2529, 2781), lab = 1990:2001)
|
||
|
|
||
|
plot(density(SP500, width = "sj", n = 256), type = "l", xlab = "", ylab = "")
|
||
|
|
||
|
par(pty = "s")
|
||
|
qqnorm(SP500)
|
||
|
qqline(SP500)
|
||
|
if(FALSE) {
|
||
|
module(garch)
|
||
|
summary(garch(SP500 ~ 1, ~garch(1,1)))
|
||
|
|
||
|
fit <- garch(SP500 ~ 1, ~garch(1,1), cond.dist = "t")
|
||
|
summary(fit)
|
||
|
plot(fit)
|
||
|
|
||
|
summary(garch(SP500 ~ 1, ~egarch(1,1), cond.dist = "t", leverage = TRUE))
|
||
|
}
|
||
|
|
||
|
if(require(tseries))
|
||
|
print(summary(garch(x = SP500 - median(SP500), order = c(1, 1))))
|
||
|
|
||
|
# End of ch14
|