CircosHeatmap-aardio/dist/lib/r-library/survival/tests/summary_survfit.Rout.save

224 lines
5.6 KiB
Plaintext
Raw Normal View History

2025-01-12 00:52:51 +08:00
R Under development (unstable) (2024-02-06 r85866) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ## check that the scale option to summary.survfit works
> ## Marc Schwartz reported this as a bug in 2.35-3.
> library(survival)
> fit <- survfit(Surv(futime, fustat) ~rx, data=ovarian)
> temp1 <- summary(fit)
> temp2 <- summary(fit, scale=365.25)
>
> all.equal(temp1$time/365.25, temp2$time)
[1] TRUE
> all.equal(temp1$rmean.endtime/365.25, temp2$rmean.endtime)
[1] TRUE
> all.equal(temp1$table[,5:6]/365.25, temp2$table[,5:6])
[1] TRUE
> temp <- names(fit)
> temp <- temp[!temp %in% c("time", "table", "rmean.endtime")]
> all.equal(temp1[temp], temp2[temp])
[1] TRUE
>
> # Reprise, using the rmean option
> temp1 <- summary(fit, rmean=300)
> temp2 <- summary(fit, rmean=300, scale=365.25)
> all.equal(temp1$time/365.25, temp2$time)
[1] TRUE
> all.equal(temp1$rmean.endtime/365.25, temp2$rmean.endtime)
[1] TRUE
> all.equal(temp1$table[,5:6]/365.25, temp2$table[,5:6])
[1] TRUE
> all.equal(temp1[temp], temp2[temp])
[1] TRUE
>
> # Repeat using multi-state data. Time is in months for mgus2
> etime <- with(mgus2, ifelse(pstat==0, futime, ptime))
> event <- with(mgus2, ifelse(pstat==0, 2*death, 1))
> event <- factor(event, 0:2, labels=c("censor", "pcm", "death"))
> mfit <- survfit(Surv(etime, event) ~ sex, mgus2)
> temp1 <- summary(mfit)
> temp2 <- summary(mfit, scale=12)
>
> all.equal(temp1$time/12, temp2$time)
[1] TRUE
> all.equal(temp1$rmean.endtime/12, temp2$rmean.endtime)
[1] TRUE
> all.equal(temp1$table[,3]/12, temp2$table[,3])
[1] TRUE
> temp <- names(temp1)
> temp <- temp[!temp %in% c("time", "table", "rmean.endtime")]
> all.equal(temp1[temp], temp2[temp])
[1] TRUE
>
> # Reprise, using the rmean option
> temp1 <- summary(mfit, rmean=240)
> temp2 <- summary(mfit, rmean=240, scale=12)
> all.equal(temp1$time/12, temp2$time)
[1] TRUE
> all.equal(temp1$rmean.endtime/12, temp2$rmean.endtime)
[1] TRUE
> all.equal(temp1$table[,3]/12, temp2$table[,3])
[1] TRUE
> all.equal(temp1[temp], temp2[temp])
[1] TRUE
>
>
> # The n.risk values from summary.survfit were off when there are multiple
> # curves (version 2.39-2)
> # Verify all components by subscripting
> m1 <- mfit[1,]
> m2 <- mfit[2,]
> s1 <- summary(m1, times=c(0,100, 200, 300))
> s2 <- summary(m2, times=c(0,100, 200, 300))
> s3 <- summary(mfit, times=c(0,100, 200, 300))
>
> tfun <- function(what) {
+ if (is.matrix(s3[[what]]))
+ all.equal(rbind(s1[[what]], s2[[what]]), s3[[what]])
+ else all.equal(c(s1[[what]], s2[[what]]), s3[[what]])
+ }
> tfun('n')
[1] TRUE
> tfun("time")
[1] TRUE
> tfun("n.risk")
[1] TRUE
> tfun("n.event")
[1] TRUE
> tfun("n.censor")
[1] TRUE
> tfun("pstate")
[1] TRUE
> all.equal(rbind(s1$p0, s2$p0), s3$p0, check.attributes=FALSE)
[1] TRUE
> tfun("std.err")
[1] TRUE
> tfun("lower")
[1] TRUE
> tfun("upper")
[1] TRUE
>
> # Check the cumulative sums
> temp <- rbind(0, 0,
+ colSums(m1$n.event[m1$time <= 100,]),
+ colSums(m1$n.event[m1$time <= 200, ]),
+ colSums(m1$n.event[m1$time <= 300, ]))
> all.equal(s1$n.event, apply(temp,2, diff))
[1] TRUE
>
> temp <- rbind(0, 0,
+ colSums(m2$n.event[m2$time <= 100,]),
+ colSums(m2$n.event[m2$time <= 200, ]),
+ colSums(m2$n.event[m2$time <= 300, ]))
> all.equal(s2$n.event, apply(temp,2, diff))
[1] TRUE
>
> temp <- rbind(0, 0,
+ colSums(m1$n.censor[m1$time <= 100,]),
+ colSums(m1$n.censor[m1$time <= 200,]),
+ colSums(m1$n.censor[m1$time <= 300,]))
> all.equal(s1$n.censor, apply(temp, 2, diff))
[1] TRUE
>
> # check the same with survfit objects
> s1 <- summary(fit[1], times=c(0, 200, 400, 600))
> s2 <- summary(fit[2], times=c(0, 200, 400, 600))
> s3 <- summary(fit, times=c(0, 200, 400, 600))
> tfun('n')
[1] TRUE
> tfun("time")
[1] TRUE
> tfun("n.risk")
[1] TRUE
> tfun("n.event")
[1] TRUE
> tfun("n.censor")
[1] TRUE
> tfun("surv")
[1] TRUE
> tfun("std.err")
[1] TRUE
> tfun("lower")
[1] TRUE
> tfun("upper")
[1] TRUE
>
> f2 <- fit[2]
> temp <- c(0, 0, sum(f2$n.event[f2$time <= 200]),
+ sum(f2$n.event[f2$time <= 400]),
+ sum(f2$n.event[f2$time <= 600]))
> all.equal(s2$n.event, diff(temp))
[1] TRUE
>
> f1 <- fit[1]
> temp <- c(0, 0,sum(f1$n.censor[f1$time <= 200]),
+ sum(f1$n.censor[f1$time <= 400]),
+ sum(f1$n.censor[f1$time <= 600]))
> all.equal(s1$n.censor, diff(temp))
[1] TRUE
>
> #
> # A check on the censor option
> #
> s1 <- summary(fit[1])
> s2 <- summary(fit[2])
> s3 <- summary(fit)
> tfun('n')
[1] TRUE
> tfun("time")
[1] TRUE
> tfun("n.risk")
[1] TRUE
> tfun("n.event")
[1] TRUE
> tfun("n.censor")
[1] TRUE
> tfun("surv")
[1] TRUE
> tfun("std.err")
[1] TRUE
> tfun("lower")
[1] TRUE
> tfun("upper")
[1] TRUE
>
> s1 <- summary(mfit[1,])
> s2 <- summary(mfit[2,])
> s3 <- summary(mfit)
> tfun('n')
[1] TRUE
> tfun("time")
[1] TRUE
> tfun("n.risk")
[1] TRUE
> tfun("n.event")
[1] TRUE
> tfun("n.censor")
[1] TRUE
> tfun("surv")
[1] TRUE
> tfun("std.err")
[1] TRUE
> tfun("lower")
[1] TRUE
> tfun("upper")
[1] TRUE
>
> proc.time()
user system elapsed
0.413 0.039 0.450