106 lines
4.0 KiB
R
106 lines
4.0 KiB
R
|
library(survival)
|
||
|
|
||
|
# start with the example used in chapter 2 of the book
|
||
|
|
||
|
bdata <- data.frame(time = c(1, 2, 2, 3, 4, 4, 5, 5, 8, 8,
|
||
|
9, 10,11, 12,14, 15, 16, 16, 18, 20),
|
||
|
status = c(1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1,
|
||
|
0, 0, 1, 0, 0, 1, 0, 1, 0))
|
||
|
|
||
|
# First check: verify that the the RTTR reproduces the KM
|
||
|
kfit <- survfit(Surv(time, status) ~1, bdata)
|
||
|
bwt <- rttright(Surv(time, status) ~1, bdata, renorm= FALSE)
|
||
|
|
||
|
cdf <- cumsum(bwt)/nrow(bdata) # weighted CDF
|
||
|
cdf <- cdf[!duplicated(bdata$time, fromLast=TRUE)] # remove duplicates
|
||
|
all.equal(kfit$surv, 1-cdf)
|
||
|
|
||
|
|
||
|
# A covariate divides both survfit and rttr into disjoint groups, so repeat
|
||
|
# the above check on subsets of the aml data
|
||
|
afit <- survfit(Surv(time, status) ~x, aml)
|
||
|
awt <- rttright(Surv(time, status) ~x, aml, renorm=TRUE)
|
||
|
|
||
|
igroup <- as.numeric(aml$x)
|
||
|
for (i in 1:2) {
|
||
|
atemp <- awt[igroup ==i] # subset for this curve
|
||
|
index <- order(aml$time[igroup ==i])
|
||
|
acdf <- cumsum(atemp[index])
|
||
|
acdf <- acdf[!duplicated(aml$time[igroup ==i], fromLast=TRUE)]
|
||
|
print(all.equal(afit[i]$surv, 1-acdf))
|
||
|
}
|
||
|
|
||
|
|
||
|
###########
|
||
|
# Alternate computation using inverse prob of censoring weights.
|
||
|
# First shift the censorings to avoid ties: if there is a death and a censor
|
||
|
# at time 10, say, the death was not at risk of censoring. Censoring weights
|
||
|
# happen "later". This also results in a left-continuous curve.
|
||
|
delta <- min(diff(sort(unique(bdata$time)))) /3
|
||
|
offset <- ifelse(bdata$status==1, 0, delta)
|
||
|
cfit <- survfit(Surv(time+ offset, 1-status) ~ 1, bdata)
|
||
|
|
||
|
# interpolate
|
||
|
indx <- findInterval(bdata$time, cfit$time)
|
||
|
cwt <- ifelse(bdata$status==0, 0, 1/cfit$surv[indx])
|
||
|
all.equal(bwt, cwt)
|
||
|
|
||
|
# Multiple time points, this example is used in the vignette
|
||
|
tdata <- data.frame(time= c(1,2,2,3,4,4,5,5,8,9),
|
||
|
status= c(1,1,0,1,0,0,1,0,1,1))
|
||
|
fit1 <- rttright(Surv(time, status) ~ 1, tdata, times=2:6, renorm=FALSE)
|
||
|
fit2 <- rttright(Surv(time, status) ~ 1, tdata, times=2:6, renorm=TRUE)
|
||
|
all.equal(fit1, 10*fit2)
|
||
|
all.equal(fit1, cbind(7, c(7,7,0,8,8,8,8,8,8,8),
|
||
|
c(7,7,0,8,8,8,8,8,8,8),
|
||
|
c(7,7,0,8,0,0,12,12,12,12),
|
||
|
c(7,7,0,8,0,0,12, 0, 18,18))/7, check.attributes=FALSE)
|
||
|
|
||
|
# Now test with (start, stop] data, should get the same results
|
||
|
b2 <- survSplit(Surv(time, status) ~ 1, bdata, cut= c(3,5, 7, 14),
|
||
|
id = "subject")
|
||
|
indx <- c(seq(1, 65, by=2), seq(64, 2, by= -2))
|
||
|
b2 <- b2[indx,] # not in time within subject order (stronger test)
|
||
|
|
||
|
b2wt <- rttright(Surv(tstart, time, status) ~1, b2, id=subject)
|
||
|
indx2 <- order(b2$time)
|
||
|
cdf2 <- cumsum(b2wt[indx2])
|
||
|
cdf2 <- cdf2[!duplicated(b2$time[indx2], fromLast=TRUE)] # remove duplicates
|
||
|
utime2 <- sort(unique(b2$time)) # will have an extra time 7
|
||
|
utime1 <- sort(unique(bdata$time))
|
||
|
all.equal(cdf2[match(utime1, utime2)], cdf)
|
||
|
|
||
|
|
||
|
# Competing risks
|
||
|
mdata <- mgus2
|
||
|
mdata$etime <- with(mgus2, ifelse(pstat==1, ptime, futime))
|
||
|
mdata$estat <- with(mgus2, ifelse(pstat==1, 1, 2*death))
|
||
|
mdata$estat <- factor(mdata$estat, 0:2, c('censor', 'pcm', 'death'))
|
||
|
mfit <- survfit(Surv(etime, estat) ~1, mdata, id=id, time0=FALSE)
|
||
|
mwt1 <- rttright(Surv(etime, estat) ~1, mdata, id=id)
|
||
|
|
||
|
morder <- order(mdata$etime)
|
||
|
mdata2 <- mdata[morder,]
|
||
|
mwt2 <- rttright(Surv(etime,estat) ~1, mdata2, id=id)
|
||
|
all.equal(mwt1[morder], mwt2)
|
||
|
|
||
|
keep <- !duplicated(mdata2$etime, fromLast=TRUE)
|
||
|
csum1 <- cumsum(ifelse(mdata2$estat=="pcm", mwt2, 0))
|
||
|
csum2 <- cumsum(ifelse(mdata2$estat=="death", mwt2, 0))
|
||
|
|
||
|
all.equal(mfit$pstate[,2], csum1[keep])
|
||
|
all.equal(mfit$pstate[,3], csum2[keep])
|
||
|
|
||
|
# Case weights, at multiple times
|
||
|
bwt <- rep(1:2, length=nrow(bdata))
|
||
|
tm <- c(2, 6, 10, 15, 18)
|
||
|
fit1 <- rttright(Surv(time, status) ~1, bdata, weights=bwt, times= tm)
|
||
|
casefit <- survfit(Surv(time, status) ~ 1, bdata, weights= bwt)
|
||
|
csum1 <- summary(casefit, censor=FALSE, times= tm)
|
||
|
for (i in 1:length(tm)) {
|
||
|
c1 <- sum(fit1[bdata$status==1 & bdata$time <= tm[i], i])
|
||
|
print(all.equal(c1, 1-csum1$surv[i]))
|
||
|
}
|
||
|
|
||
|
|