217 lines
9.0 KiB
R
217 lines
9.0 KiB
R
|
library(survival)
|
||
|
options(na.action=na.exclude) # preserve missings
|
||
|
options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
|
||
|
|
||
|
#
|
||
|
# Tests for the condordance function.
|
||
|
#
|
||
|
aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...)
|
||
|
|
||
|
grank <- function(x, time, grp, wt) {
|
||
|
if (all(wt==1)) unlist(tapply(x, grp, rank))
|
||
|
else unlist(tapply(1:length(x), grp, function(i) {
|
||
|
xx <- x[i] # x and wts for this subset of the data
|
||
|
ww <- wt[i]
|
||
|
temp <- outer(xx, xx, function(a, b) sign(b-a))
|
||
|
colSums(ww*temp)/2
|
||
|
}))
|
||
|
}
|
||
|
|
||
|
# a Cox model using iter=0, ties='breslow' and the above function has a score
|
||
|
# statistic which is U=(C-D)/2 and score test U^2/H, where H is the Cox model
|
||
|
# information matrix, with fit$var=1/H. The concordance is U+ 1/2.
|
||
|
# Pull out the Somers' d and its variance
|
||
|
phget <- function(fit) {
|
||
|
c(d = 2*sqrt(fit$score/fit$var), v= 4/fit$var)
|
||
|
}
|
||
|
fscale <- function(fit) {
|
||
|
if (is.matrix(fit$count)) temp <- colSums(fit$count) else temp <- fit$count
|
||
|
npair <- sum(temp[1:3])
|
||
|
c(d = abs(temp[1]-temp[2]), v=4*fit$cvar*npair^2)
|
||
|
}
|
||
|
|
||
|
# Concordance by brute force. O(n^2) algorithm, but ok for n<500 or so
|
||
|
allpair <- function(time, status, x, wt, all=FALSE) {
|
||
|
n <- length(time)
|
||
|
if (missing(wt)) wt <- rep(1, length(x))
|
||
|
count <- sapply(which(status==1), function(i) {
|
||
|
atrisk <- (time > time[i]) | (time==time[i] & status==0)
|
||
|
temp <- tapply(wt[atrisk], factor(sign(x[i] -x[atrisk]), c(-1, 1, 0)),
|
||
|
sum)
|
||
|
tiedtime <- (time==time[i] & status ==1 & (1:n)>i)
|
||
|
ties <- tapply(wt[tiedtime], factor(x[tiedtime]==x[i],
|
||
|
c(FALSE, TRUE)),sum)
|
||
|
wt[i]* c(ifelse(is.na(temp), 0, temp), ifelse(is.na(ties), 0, ties))
|
||
|
})
|
||
|
rownames(count) <- c("concordant", "discordant", "tied.x", "tied.y",
|
||
|
"tied.xy")
|
||
|
if (all) {
|
||
|
colnames(count) <- time[status==1]
|
||
|
t(count)
|
||
|
}
|
||
|
else rowSums(count)
|
||
|
}
|
||
|
|
||
|
# leverage by brute force
|
||
|
leverage <- function(time, status, x, wt, eps=1e-5) {
|
||
|
if (missing(wt)) wt <- rep(1, length(x))
|
||
|
toss <- is.na(time + status + x +wt)
|
||
|
if (any(toss)) {
|
||
|
time <- time[!toss]
|
||
|
status <- status[!toss]
|
||
|
x <- x[!toss]
|
||
|
wt <- wt[!toss]
|
||
|
}
|
||
|
n <- length(time)
|
||
|
influence <- matrix(0, n, 5)
|
||
|
t2 <- time + eps*(status==0)
|
||
|
for (i in 1:n) {
|
||
|
if (status[i] ==0) comparable <- (time<=time[i] & status==1)
|
||
|
else comparable <- ifelse(status==0, time >= time[i], time!=time[i])
|
||
|
temp <- sign((x[i]-x[comparable])*(t2[i] - t2[comparable]))
|
||
|
influence[i,1:3] <-tapply(wt[comparable],factor(temp, c(1,-1,0)), sum)
|
||
|
if (status[i]==1) {
|
||
|
tied <- (time==time[i] & status==1 & (1:n)!= i)
|
||
|
if (any(tied)) {
|
||
|
itemp<- tapply(wt[tied], factor(x[tied]==x[i],
|
||
|
c(FALSE, TRUE)), sum)
|
||
|
influence[i,4:5] <- itemp
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
dimnames(influence) <- list(as.character(Surv(time, status)),
|
||
|
c("concord", "discord", "tie.x", "tie.y",
|
||
|
"tie.xy"))
|
||
|
ifelse(is.na(influence), 0, influence)
|
||
|
}
|
||
|
|
||
|
tdata <- aml[aml$x=='Maintained', c("time", "status")]
|
||
|
tdata$x <- c(1,6,2,7,3,7,3,8,4,4,5)
|
||
|
tdata$wt <- c(1,2,3,2,1,2,3,4,3,2,1)
|
||
|
|
||
|
fit <- concordance(Surv(time, status) ~x, tdata, influence=2)
|
||
|
aeq(fit$count, with(tdata, allpair(time, status, x)))
|
||
|
aeq(fit$influence, with(tdata, leverage(time, status, x)))
|
||
|
|
||
|
cfit <- coxph(Surv(time, status) ~ tt(x), tdata, tt=grank, ties='breslow',
|
||
|
iter=0, x=T)
|
||
|
aeq(phget(cfit), fscale(fit)) # agree with Cox model
|
||
|
|
||
|
# Test 2: Lots of ties
|
||
|
tempy <- Surv(c(1,2,2,2,3,4,4,4,5,2), c(1,0,1,0,1,0,1,1,0,1))
|
||
|
tempx <- c(5,5,4,4,3,3,7,6,5,4)
|
||
|
fit2 <- concordance(tempy ~ tempx, influence=2)
|
||
|
aeq(fit2$count, allpair(tempy[,1], tempy[,2], tempx))
|
||
|
aeq(fit2$influence, leverage(tempy[,1], tempy[,2], tempx))
|
||
|
cfit2 <- coxph(tempy ~ tt(tempx), tt=grank, ties="breslow", iter=0)
|
||
|
aeq(phget(cfit2), fscale(fit2)) # agree with Cox model
|
||
|
|
||
|
# Bigger data
|
||
|
cox3 <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung)
|
||
|
fit3 <- concordance(Surv(time, status) ~ predict(cox3), lung, influence=2)
|
||
|
aeq(fit3$count, allpair(lung$time, lung$status-1,predict(cox3)))
|
||
|
aeq(fit3$influence, leverage(lung$time, lung$status-1,predict(cox3)))
|
||
|
cfit3 <- coxph(Surv(time, status) ~ tt(predict(cox3)), tt=grank,
|
||
|
ties="breslow", iter=0, data=lung)
|
||
|
aeq(phget(cfit3), fscale(fit3)) # agree with Cox model
|
||
|
|
||
|
# More ties
|
||
|
fit4 <- concordance(Surv(time, status) ~ ph.ecog, lung, influence=2)
|
||
|
fit4b <- concordance(Surv(time, status) ~ ph.ecog, lung, reverse=TRUE)
|
||
|
aeq(fit4$count, allpair(lung$time, lung$status-1, lung$ph.ecog))
|
||
|
aeq(fit4b$count, c(8392, 4258, 7137, 21, 7))
|
||
|
cfit4 <- coxph(Surv(time, status) ~ tt(ph.ecog), lung,
|
||
|
iter=0, method='breslow', tt=grank)
|
||
|
aeq(phget(cfit4), fscale(fit4)) # agree with Cox model
|
||
|
|
||
|
# Case weights
|
||
|
fit5 <- concordance(Surv(time, status) ~ x, tdata, weights=wt, influence=2)
|
||
|
fit6 <- concordance(Surv(time, status) ~x, tdata[rep(1:11,tdata$wt),])
|
||
|
aeq(fit5$count, with(tdata, allpair(time, status, x, wt)))
|
||
|
aeq(fit5$count, c(91, 70, 7, 0, 0)) # checked by hand
|
||
|
aeq(fit5$count[1:3], fit6$count[1:3]) #spurious "tied.xy" values, ignore
|
||
|
aeq(fit5$var[2], fit6$var[2])
|
||
|
aeq(fit5$influence, with(tdata, leverage(time, status, x, wt)))
|
||
|
cfit5 <- coxph(Surv(time, status) ~ tt(x), tdata, weights=wt,
|
||
|
iter=0, method='breslow', tt=grank)
|
||
|
aeq(phget(cfit5), fscale(fit5)) # agree with Cox model
|
||
|
|
||
|
# Start, stop simplest cases
|
||
|
fit6 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata)
|
||
|
aeq(fit6$count, fit$count)
|
||
|
aeq(fit6$var, fit$var)
|
||
|
fit7 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata, weights=wt)
|
||
|
aeq(fit7$count, fit5$count)
|
||
|
aeq(fit7$var, fit5$var)
|
||
|
|
||
|
# Multiple intervals for some, but same risk sets as tdata
|
||
|
tdata2 <- data.frame(time1=c(0,3, 5, 6,7, 0, 4,17, 7, 0,16, 2, 0,
|
||
|
0,9, 5),
|
||
|
time2=c(3,9, 13, 7,13, 18, 17,23, 28, 16,31, 34, 45,
|
||
|
9,48, 60),
|
||
|
status=c(0,1, 1, 0,0, 1, 0,1, 0, 0,1, 1, 0, 0,1, 0),
|
||
|
x = c(1,1, 6, 2,2, 7, 3,3, 7, 3,3, 8, 4, 4,4, 5),
|
||
|
wt= c(1,1, 2, 3,3, 2, 1,1, 2, 3,3, 4, 3, 2,2, 1),
|
||
|
id= c(1,1, 2, 3,3, 4, 5,5, 6, 7,7, 8, 9, 10,10, 11))
|
||
|
fit8 <- concordance(Surv(time1, time2, status) ~x, cluster=id, tdata2,
|
||
|
weights=wt, influence=2)
|
||
|
aeq(fit5$count, fit8$count)
|
||
|
# influence has one row per obs, so the next line is false: mismatched lengths
|
||
|
# aeq(fit5$influence, fit8$influence)
|
||
|
aeq(fit5$var, fit8$var)
|
||
|
cfit8 <- coxph(Surv(time1, time2, status) ~ tt(x), tdata2, weights=wt,
|
||
|
iter=0, method='breslow', tt=grank)
|
||
|
aeq(phget(cfit8), fscale(fit8)) # agree with Cox model
|
||
|
|
||
|
# Stratified
|
||
|
tdata3 <- data.frame(time1=c(tdata2$time1, rep(0, nrow(lung))),
|
||
|
time2=c(tdata2$time2, lung$time),
|
||
|
status = c(tdata2$status, lung$status -1),
|
||
|
x = c(tdata2$x, lung$ph.ecog),
|
||
|
wt= c(tdata2$wt, rep(1, nrow(lung))),
|
||
|
grp=rep(1:2, c(nrow(tdata2), nrow(lung))),
|
||
|
id = c(tdata2$id, 100+ 1:nrow(lung)))
|
||
|
fit9 <- concordance(Surv(time1, time2, status) ~x + strata(grp), cluster=id,
|
||
|
data=tdata3, weights=wt, influence=2)
|
||
|
aeq(fit9$count, rbind(fit8$count, fit4$count))
|
||
|
|
||
|
# check out case weights, strata, and grouped jackknife;
|
||
|
# force several ties in x, y, and xy (with missing values too for good measure).
|
||
|
tdata <- subset(lung, select=-c(meal.cal, wt.loss, sex, age))
|
||
|
tdata$wt <- rep(1:25, length.out=nrow(tdata))/10
|
||
|
tdata$time <- ceiling(tdata$time/30) # force ties in y
|
||
|
tfit <- coxph(Surv(time, status) ~ ph.ecog + pat.karno + strata(inst)
|
||
|
+ cluster(inst), tdata, weights=wt)
|
||
|
tdata$tpred <- predict(tfit)
|
||
|
cm4 <- concordance(tfit, influence=3, keepstrata=TRUE)
|
||
|
cm5 <- concordance(Surv(time, status) ~ tpred + strata(inst) + cluster(inst),
|
||
|
data=tdata, weights=wt, reverse=TRUE, influence=3,
|
||
|
keepstrata=TRUE)
|
||
|
all.equal(cm4[1:6], cm5[1:6]) # call and na.action won't match
|
||
|
|
||
|
u.inst <- sort(unique(tdata$inst))
|
||
|
temp <- matrix(0, length(u.inst), 5)
|
||
|
for (i in 1:length(u.inst)) {
|
||
|
temp[i,] <- with(subset(tdata, inst==u.inst[i]),
|
||
|
allpair(time, status-1, -tpred, wt))
|
||
|
}
|
||
|
aeq(temp, cm4$count)
|
||
|
|
||
|
eps <- 1e-6
|
||
|
keep <- (1:nrow(tdata))[-tfit$na.action] # the obs that are not tossed
|
||
|
lmat <- matrix(0., length(keep), 5)
|
||
|
for (i in 1:length(keep)) {
|
||
|
wt2 <- tdata$wt
|
||
|
wt2[keep[i]] <- wt2[keep[i]] + eps
|
||
|
|
||
|
test <- concordance(Surv(time, status) ~ predict(tfit) + strata(inst),
|
||
|
data=tdata, weights=wt2, group=group, reverse=TRUE,
|
||
|
keepstrata=TRUE)
|
||
|
lmat[i,] <- colSums(test$count - cm4$count)/eps
|
||
|
}
|
||
|
aeq(lmat, cm4$influence, tolerance=eps)
|
||
|
|
||
|
# Check that keepstrata gives the correct sum
|
||
|
cm4b <- concordance(tfit, keepstrata=FALSE)
|
||
|
aeq(cm4b$count, colSums(cm4$count))
|