522 lines
244 KiB
HTML
522 lines
244 KiB
HTML
|
<!DOCTYPE html>
|
|||
|
|
|||
|
<html>
|
|||
|
|
|||
|
<head>
|
|||
|
|
|||
|
<meta charset="utf-8" />
|
|||
|
<meta name="generator" content="pandoc" />
|
|||
|
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
|
|||
|
|
|||
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<title>Introduction to ggplot2</title>
|
|||
|
|
|||
|
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
|
|||
|
// be compatible with the behavior of Pandoc < 2.8).
|
|||
|
document.addEventListener('DOMContentLoaded', function(e) {
|
|||
|
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
|
|||
|
var i, h, a;
|
|||
|
for (i = 0; i < hs.length; i++) {
|
|||
|
h = hs[i];
|
|||
|
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
|
|||
|
a = h.attributes;
|
|||
|
while (a.length > 0) h.removeAttribute(a[0].name);
|
|||
|
}
|
|||
|
});
|
|||
|
</script>
|
|||
|
|
|||
|
<style type="text/css">
|
|||
|
code{white-space: pre-wrap;}
|
|||
|
span.smallcaps{font-variant: small-caps;}
|
|||
|
span.underline{text-decoration: underline;}
|
|||
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|||
|
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
|||
|
ul.task-list{list-style: none;}
|
|||
|
</style>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<style type="text/css">
|
|||
|
code {
|
|||
|
white-space: pre;
|
|||
|
}
|
|||
|
.sourceCode {
|
|||
|
overflow: visible;
|
|||
|
}
|
|||
|
</style>
|
|||
|
<style type="text/css" data-origin="pandoc">
|
|||
|
pre > code.sourceCode { white-space: pre; position: relative; }
|
|||
|
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
|||
|
pre > code.sourceCode > span:empty { height: 1.2em; }
|
|||
|
.sourceCode { overflow: visible; }
|
|||
|
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
|||
|
div.sourceCode { margin: 1em 0; }
|
|||
|
pre.sourceCode { margin: 0; }
|
|||
|
@media screen {
|
|||
|
div.sourceCode { overflow: auto; }
|
|||
|
}
|
|||
|
@media print {
|
|||
|
pre > code.sourceCode { white-space: pre-wrap; }
|
|||
|
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
|||
|
}
|
|||
|
pre.numberSource code
|
|||
|
{ counter-reset: source-line 0; }
|
|||
|
pre.numberSource code > span
|
|||
|
{ position: relative; left: -4em; counter-increment: source-line; }
|
|||
|
pre.numberSource code > span > a:first-child::before
|
|||
|
{ content: counter(source-line);
|
|||
|
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
|||
|
border: none; display: inline-block;
|
|||
|
-webkit-touch-callout: none; -webkit-user-select: none;
|
|||
|
-khtml-user-select: none; -moz-user-select: none;
|
|||
|
-ms-user-select: none; user-select: none;
|
|||
|
padding: 0 4px; width: 4em;
|
|||
|
color: #aaaaaa;
|
|||
|
}
|
|||
|
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
|||
|
div.sourceCode
|
|||
|
{ }
|
|||
|
@media screen {
|
|||
|
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
|||
|
}
|
|||
|
code span.al { color: #ff0000; font-weight: bold; }
|
|||
|
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|||
|
code span.at { color: #7d9029; }
|
|||
|
code span.bn { color: #40a070; }
|
|||
|
code span.bu { color: #008000; }
|
|||
|
code span.cf { color: #007020; font-weight: bold; }
|
|||
|
code span.ch { color: #4070a0; }
|
|||
|
code span.cn { color: #880000; }
|
|||
|
code span.co { color: #60a0b0; font-style: italic; }
|
|||
|
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|||
|
code span.do { color: #ba2121; font-style: italic; }
|
|||
|
code span.dt { color: #902000; }
|
|||
|
code span.dv { color: #40a070; }
|
|||
|
code span.er { color: #ff0000; font-weight: bold; }
|
|||
|
code span.ex { }
|
|||
|
code span.fl { color: #40a070; }
|
|||
|
code span.fu { color: #06287e; }
|
|||
|
code span.im { color: #008000; font-weight: bold; }
|
|||
|
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|||
|
code span.kw { color: #007020; font-weight: bold; }
|
|||
|
code span.op { color: #666666; }
|
|||
|
code span.ot { color: #007020; }
|
|||
|
code span.pp { color: #bc7a00; }
|
|||
|
code span.sc { color: #4070a0; }
|
|||
|
code span.ss { color: #bb6688; }
|
|||
|
code span.st { color: #4070a0; }
|
|||
|
code span.va { color: #19177c; }
|
|||
|
code span.vs { color: #4070a0; }
|
|||
|
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|||
|
</style>
|
|||
|
<script>
|
|||
|
// apply pandoc div.sourceCode style to pre.sourceCode instead
|
|||
|
(function() {
|
|||
|
var sheets = document.styleSheets;
|
|||
|
for (var i = 0; i < sheets.length; i++) {
|
|||
|
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
|
|||
|
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
|
|||
|
var j = 0;
|
|||
|
while (j < rules.length) {
|
|||
|
var rule = rules[j];
|
|||
|
// check if there is a div.sourceCode rule
|
|||
|
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
|
|||
|
j++;
|
|||
|
continue;
|
|||
|
}
|
|||
|
var style = rule.style.cssText;
|
|||
|
// check if color or background-color is set
|
|||
|
if (rule.style.color === '' && rule.style.backgroundColor === '') {
|
|||
|
j++;
|
|||
|
continue;
|
|||
|
}
|
|||
|
// replace div.sourceCode by a pre.sourceCode rule
|
|||
|
sheets[i].deleteRule(j);
|
|||
|
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
|
|||
|
}
|
|||
|
}
|
|||
|
})();
|
|||
|
</script>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<style type="text/css">body {
|
|||
|
background-color: #fff;
|
|||
|
margin: 1em auto;
|
|||
|
max-width: 700px;
|
|||
|
overflow: visible;
|
|||
|
padding-left: 2em;
|
|||
|
padding-right: 2em;
|
|||
|
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
|
|||
|
font-size: 14px;
|
|||
|
line-height: 1.35;
|
|||
|
}
|
|||
|
#TOC {
|
|||
|
clear: both;
|
|||
|
margin: 0 0 10px 10px;
|
|||
|
padding: 4px;
|
|||
|
width: 400px;
|
|||
|
border: 1px solid #CCCCCC;
|
|||
|
border-radius: 5px;
|
|||
|
background-color: #f6f6f6;
|
|||
|
font-size: 13px;
|
|||
|
line-height: 1.3;
|
|||
|
}
|
|||
|
#TOC .toctitle {
|
|||
|
font-weight: bold;
|
|||
|
font-size: 15px;
|
|||
|
margin-left: 5px;
|
|||
|
}
|
|||
|
#TOC ul {
|
|||
|
padding-left: 40px;
|
|||
|
margin-left: -1.5em;
|
|||
|
margin-top: 5px;
|
|||
|
margin-bottom: 5px;
|
|||
|
}
|
|||
|
#TOC ul ul {
|
|||
|
margin-left: -2em;
|
|||
|
}
|
|||
|
#TOC li {
|
|||
|
line-height: 16px;
|
|||
|
}
|
|||
|
table {
|
|||
|
margin: 1em auto;
|
|||
|
border-width: 1px;
|
|||
|
border-color: #DDDDDD;
|
|||
|
border-style: outset;
|
|||
|
border-collapse: collapse;
|
|||
|
}
|
|||
|
table th {
|
|||
|
border-width: 2px;
|
|||
|
padding: 5px;
|
|||
|
border-style: inset;
|
|||
|
}
|
|||
|
table td {
|
|||
|
border-width: 1px;
|
|||
|
border-style: inset;
|
|||
|
line-height: 18px;
|
|||
|
padding: 5px 5px;
|
|||
|
}
|
|||
|
table, table th, table td {
|
|||
|
border-left-style: none;
|
|||
|
border-right-style: none;
|
|||
|
}
|
|||
|
table thead, table tr.even {
|
|||
|
background-color: #f7f7f7;
|
|||
|
}
|
|||
|
p {
|
|||
|
margin: 0.5em 0;
|
|||
|
}
|
|||
|
blockquote {
|
|||
|
background-color: #f6f6f6;
|
|||
|
padding: 0.25em 0.75em;
|
|||
|
}
|
|||
|
hr {
|
|||
|
border-style: solid;
|
|||
|
border: none;
|
|||
|
border-top: 1px solid #777;
|
|||
|
margin: 28px 0;
|
|||
|
}
|
|||
|
dl {
|
|||
|
margin-left: 0;
|
|||
|
}
|
|||
|
dl dd {
|
|||
|
margin-bottom: 13px;
|
|||
|
margin-left: 13px;
|
|||
|
}
|
|||
|
dl dt {
|
|||
|
font-weight: bold;
|
|||
|
}
|
|||
|
ul {
|
|||
|
margin-top: 0;
|
|||
|
}
|
|||
|
ul li {
|
|||
|
list-style: circle outside;
|
|||
|
}
|
|||
|
ul ul {
|
|||
|
margin-bottom: 0;
|
|||
|
}
|
|||
|
pre, code {
|
|||
|
background-color: #f7f7f7;
|
|||
|
border-radius: 3px;
|
|||
|
color: #333;
|
|||
|
white-space: pre-wrap;
|
|||
|
}
|
|||
|
pre {
|
|||
|
border-radius: 3px;
|
|||
|
margin: 5px 0px 10px 0px;
|
|||
|
padding: 10px;
|
|||
|
}
|
|||
|
pre:not([class]) {
|
|||
|
background-color: #f7f7f7;
|
|||
|
}
|
|||
|
code {
|
|||
|
font-family: Consolas, Monaco, 'Courier New', monospace;
|
|||
|
font-size: 85%;
|
|||
|
}
|
|||
|
p > code, li > code {
|
|||
|
padding: 2px 0px;
|
|||
|
}
|
|||
|
div.figure {
|
|||
|
text-align: center;
|
|||
|
}
|
|||
|
img {
|
|||
|
background-color: #FFFFFF;
|
|||
|
padding: 2px;
|
|||
|
border: 1px solid #DDDDDD;
|
|||
|
border-radius: 3px;
|
|||
|
border: 1px solid #CCCCCC;
|
|||
|
margin: 0 5px;
|
|||
|
}
|
|||
|
h1 {
|
|||
|
margin-top: 0;
|
|||
|
font-size: 35px;
|
|||
|
line-height: 40px;
|
|||
|
}
|
|||
|
h2 {
|
|||
|
border-bottom: 4px solid #f7f7f7;
|
|||
|
padding-top: 10px;
|
|||
|
padding-bottom: 2px;
|
|||
|
font-size: 145%;
|
|||
|
}
|
|||
|
h3 {
|
|||
|
border-bottom: 2px solid #f7f7f7;
|
|||
|
padding-top: 10px;
|
|||
|
font-size: 120%;
|
|||
|
}
|
|||
|
h4 {
|
|||
|
border-bottom: 1px solid #f7f7f7;
|
|||
|
margin-left: 8px;
|
|||
|
font-size: 105%;
|
|||
|
}
|
|||
|
h5, h6 {
|
|||
|
border-bottom: 1px solid #ccc;
|
|||
|
font-size: 105%;
|
|||
|
}
|
|||
|
a {
|
|||
|
color: #0033dd;
|
|||
|
text-decoration: none;
|
|||
|
}
|
|||
|
a:hover {
|
|||
|
color: #6666ff; }
|
|||
|
a:visited {
|
|||
|
color: #800080; }
|
|||
|
a:visited:hover {
|
|||
|
color: #BB00BB; }
|
|||
|
a[href^="http:"] {
|
|||
|
text-decoration: underline; }
|
|||
|
a[href^="https:"] {
|
|||
|
text-decoration: underline; }
|
|||
|
|
|||
|
code > span.kw { color: #555; font-weight: bold; }
|
|||
|
code > span.dt { color: #902000; }
|
|||
|
code > span.dv { color: #40a070; }
|
|||
|
code > span.bn { color: #d14; }
|
|||
|
code > span.fl { color: #d14; }
|
|||
|
code > span.ch { color: #d14; }
|
|||
|
code > span.st { color: #d14; }
|
|||
|
code > span.co { color: #888888; font-style: italic; }
|
|||
|
code > span.ot { color: #007020; }
|
|||
|
code > span.al { color: #ff0000; font-weight: bold; }
|
|||
|
code > span.fu { color: #900; font-weight: bold; }
|
|||
|
code > span.er { color: #a61717; background-color: #e3d2d2; }
|
|||
|
</style>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
</head>
|
|||
|
|
|||
|
<body>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<h1 class="title toc-ignore">Introduction to ggplot2</h1>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<p>ggplot2 is an R package for producing visualizations of data. Unlike
|
|||
|
many graphics packages, ggplot2 uses a conceptual framework based on the
|
|||
|
grammar of graphics. This allows you to ‘speak’ a graph from composable
|
|||
|
elements, instead of being limited to a predefined set of charts.</p>
|
|||
|
<p>More complete information about how to use ggplot2 can be found in
|
|||
|
the <a href="https://ggplot2-book.org/">book</a>, but here you’ll find a
|
|||
|
brief overview of the plot components and some terse examples to build a
|
|||
|
plot like this:</p>
|
|||
|
<p><img src="
|
|||
|
<p>For structure, we go over the 7 composable parts that come together
|
|||
|
as a set of instructions on how to draw a chart.</p>
|
|||
|
<p><img src="
|
|||
|
<p>Out of these components, ggplot2 needs at least the following three
|
|||
|
to produce a chart: data, a mapping, and a layer. The scales, facets,
|
|||
|
coordinates, and themes have sensible defaults that take away a lot of
|
|||
|
finicky work.</p>
|
|||
|
<div id="data" class="section level2">
|
|||
|
<h2>Data</h2>
|
|||
|
<p>As the foundation of every graphic, ggplot2 uses <a href="https://ggplot2-book.org/getting-started.html#fuel-economy-data">data</a>
|
|||
|
to construct a plot. The system works best if the data is provided in a
|
|||
|
<a href="https://tidyr.tidyverse.org/articles/tidy-data.html">tidy</a>
|
|||
|
format, which briefly means a rectangular data frame structure where
|
|||
|
rows are observations and columns are variables.</p>
|
|||
|
<p>As the first step in many plots, you would pass the data to the
|
|||
|
<code>ggplot()</code> function, which stores the data to be used later
|
|||
|
by other parts of the plotting system. For example, if we intend to make
|
|||
|
a graphic about the <code>mpg</code> dataset, we would start as
|
|||
|
follows:</p>
|
|||
|
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">ggplot</span>(<span class="at">data =</span> mpg)</span></code></pre></div>
|
|||
|
</div>
|
|||
|
<div id="mapping" class="section level2">
|
|||
|
<h2>Mapping</h2>
|
|||
|
<p>The <a href="https://ggplot2-book.org/getting-started.html#aesthetics">mapping</a>
|
|||
|
of a plot is a set of instructions on how parts of the data are mapped
|
|||
|
onto aesthetic attributes of geometric objects. It is the ‘dictionary’
|
|||
|
to translate tidy data to the graphics system.</p>
|
|||
|
<p>A mapping can be made by using the <code>aes()</code> function to
|
|||
|
make pairs of graphical attributes and parts of the data. If we want the
|
|||
|
<code>cty</code> and <code>hwy</code> columns to map to the x- and
|
|||
|
y-coordinates in the plot, we can do that as follows:</p>
|
|||
|
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">ggplot</span>(mpg, <span class="at">mapping =</span> <span class="fu">aes</span>(<span class="at">x =</span> cty, <span class="at">y =</span> hwy))</span></code></pre></div>
|
|||
|
</div>
|
|||
|
<div id="layers" class="section level2">
|
|||
|
<h2>Layers</h2>
|
|||
|
<p>The heart of any graphic is the <a href="https://ggplot2-book.org/toolbox.html">layers</a>. They take the
|
|||
|
mapped data and display it in something humans can understand as a
|
|||
|
representation of the data. Every layer consists of three important
|
|||
|
parts:</p>
|
|||
|
<ol style="list-style-type: decimal">
|
|||
|
<li>The <a href="https://ggplot2-book.org/individual-geoms.html"><strong>geometry</strong></a>
|
|||
|
that determines <em>how</em> data are displayed, such as points, lines,
|
|||
|
or rectangles.</li>
|
|||
|
<li>The <a href="https://ggplot2-book.org/statistical-summaries.html"><strong>statistical
|
|||
|
transformation</strong></a> that may compute new variables from the data
|
|||
|
and affect <em>what</em> of the data is displayed.</li>
|
|||
|
<li>The <a href="https://ggplot2-book.org/layers.html#position"><strong>position
|
|||
|
adjustment</strong></a> that primarily determines <em>where</em> a piece
|
|||
|
of data is being displayed.</li>
|
|||
|
</ol>
|
|||
|
<p>A layer can be constructed using the <code>geom_*()</code> and
|
|||
|
<code>stat_*()</code> functions. These functions often determine one of
|
|||
|
the three parts of a layer, while the other two can still be specified.
|
|||
|
Here is how we can use two layers to display the <code>cty</code> and
|
|||
|
<code>hwy</code> columns of the <code>mpg</code> dataset as points and
|
|||
|
stack a trend line on top.</p>
|
|||
|
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">ggplot</span>(mpg, <span class="fu">aes</span>(cty, hwy)) <span class="sc">+</span></span>
|
|||
|
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a> <span class="co"># to create a scatterplot</span></span>
|
|||
|
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a> <span class="fu">geom_point</span>() <span class="sc">+</span></span>
|
|||
|
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a> <span class="co"># to fit and overlay a loess trendline</span></span>
|
|||
|
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a> <span class="fu">geom_smooth</span>(<span class="at">formula =</span> y <span class="sc">~</span> x, <span class="at">method =</span> <span class="st">"lm"</span>)</span></code></pre></div>
|
|||
|
<p><img src="
|
|||
|
</div>
|
|||
|
<div id="scales" class="section level2">
|
|||
|
<h2>Scales</h2>
|
|||
|
<p><a href="https://ggplot2-book.org/scales-guides.html">Scales</a> are
|
|||
|
important for translating what is shown on the graph back to an
|
|||
|
understanding of the data. The scales typically form pairs with
|
|||
|
aesthetic attributes of the plots, and are represented in plots by
|
|||
|
guides, like axes or legends. Scales are responsible for updating the
|
|||
|
limits of a plot, setting the breaks, formatting the labels, and
|
|||
|
possibly applying a transformation.</p>
|
|||
|
<p>To use scales, one can use one of the scale functions that are
|
|||
|
patterned as <code>scale_{aesthetic}_{type}()</code> functions, where
|
|||
|
<code>{aesthetic}</code> is one of the pairings made in the mapping part
|
|||
|
of a plot. To map the <code>class</code> column in the <code>mpg</code>
|
|||
|
dataset to the viridis colour palette, we can write the following:</p>
|
|||
|
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">ggplot</span>(mpg, <span class="fu">aes</span>(cty, hwy, <span class="at">colour =</span> class)) <span class="sc">+</span></span>
|
|||
|
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a> <span class="fu">geom_point</span>() <span class="sc">+</span></span>
|
|||
|
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a> <span class="fu">scale_colour_viridis_d</span>()</span></code></pre></div>
|
|||
|
<p><img src="
|
|||
|
</div>
|
|||
|
<div id="facets" class="section level2">
|
|||
|
<h2>Facets</h2>
|
|||
|
<p><a href="https://ggplot2-book.org/facet.html">Facets</a> can be used
|
|||
|
to separate small multiples, or different subsets of the data. It is a
|
|||
|
powerful tool to quickly split up the data into smaller panels, based on
|
|||
|
one or more variables, to display patterns or trends (or the lack
|
|||
|
thereof) within the subsets.</p>
|
|||
|
<p>The facets have their own mapping that can be given as a formula. To
|
|||
|
plot subsets of the <code>mpg</code> dataset based on levels of the
|
|||
|
<code>drv</code> and <code>year</code> variables, we can use
|
|||
|
<code>facet_grid()</code> as follows:</p>
|
|||
|
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">ggplot</span>(mpg, <span class="fu">aes</span>(cty, hwy)) <span class="sc">+</span></span>
|
|||
|
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a> <span class="fu">geom_point</span>() <span class="sc">+</span></span>
|
|||
|
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a> <span class="fu">facet_grid</span>(year <span class="sc">~</span> drv)</span></code></pre></div>
|
|||
|
<p><img src="
|
|||
|
</div>
|
|||
|
<div id="coordinates" class="section level2">
|
|||
|
<h2>Coordinates</h2>
|
|||
|
<p>You can view the <a href="https://ggplot2-book.org/coord.html">coordinates</a> part of the
|
|||
|
plot as an interpreter of position aesthetics. While typically Cartesian
|
|||
|
coordinates are used, the coordinate system powers the display of <a href="https://ggplot2-book.org/maps.html">map</a> projections and <a href="https://ggplot2-book.org/coord.html#polar-coordinates-with-coord_polar">polar</a>
|
|||
|
plots.</p>
|
|||
|
<p>We can also use coordinates to display a plot with a fixed aspect
|
|||
|
ratio so that one unit has the same length in both the x and y
|
|||
|
directions. The <code>coord_fixed()</code> function sets this ratio
|
|||
|
automatically.</p>
|
|||
|
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="fu">ggplot</span>(mpg, <span class="fu">aes</span>(cty, hwy)) <span class="sc">+</span></span>
|
|||
|
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a> <span class="fu">geom_point</span>() <span class="sc">+</span></span>
|
|||
|
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a> <span class="fu">coord_fixed</span>()</span></code></pre></div>
|
|||
|
<p><img src="
|
|||
|
</div>
|
|||
|
<div id="theme" class="section level2">
|
|||
|
<h2>Theme</h2>
|
|||
|
<p>The <a href="https://ggplot2-book.org/themes">theme</a> system
|
|||
|
controls almost any visuals of the plot that are not controlled by the
|
|||
|
data and is therefore important for the look and feel of the plot. You
|
|||
|
can use the theme for customizations ranging from changing the location
|
|||
|
of the legends to setting the background color of the plot. Many
|
|||
|
elements in the theme are hierarchical in that setting the look of the
|
|||
|
general axis line affects those of the x and y axes simultaneously.</p>
|
|||
|
<p>To tweak the look of the plot, one can use many of the built-in
|
|||
|
<code>theme_*()</code> functions and/or detail specific aspects with the
|
|||
|
<code>theme()</code> function. The <code>element_*()</code> functions
|
|||
|
control the graphical attributes of theme components.</p>
|
|||
|
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu">ggplot</span>(mpg, <span class="fu">aes</span>(cty, hwy, <span class="at">colour =</span> class)) <span class="sc">+</span></span>
|
|||
|
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a> <span class="fu">geom_point</span>() <span class="sc">+</span></span>
|
|||
|
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a> <span class="fu">theme_minimal</span>() <span class="sc">+</span></span>
|
|||
|
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a> <span class="fu">theme</span>(</span>
|
|||
|
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a> <span class="at">legend.position =</span> <span class="st">"top"</span>,</span>
|
|||
|
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a> <span class="at">axis.line =</span> <span class="fu">element_line</span>(<span class="at">linewidth =</span> <span class="fl">0.75</span>),</span>
|
|||
|
<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a> <span class="at">axis.line.x.bottom =</span> <span class="fu">element_line</span>(<span class="at">colour =</span> <span class="st">"blue"</span>)</span>
|
|||
|
<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a> )</span></code></pre></div>
|
|||
|
<p><img src="
|
|||
|
</div>
|
|||
|
<div id="combining" class="section level2">
|
|||
|
<h2>Combining</h2>
|
|||
|
<p>As mentioned at the start, you can layer all of the pieces to build a
|
|||
|
customized plot of your data, like the one shown at the beginning of
|
|||
|
this vignette:</p>
|
|||
|
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">ggplot</span>(mpg, <span class="fu">aes</span>(cty, hwy)) <span class="sc">+</span></span>
|
|||
|
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a> <span class="fu">geom_point</span>(<span class="at">mapping =</span> <span class="fu">aes</span>(<span class="at">colour =</span> displ)) <span class="sc">+</span></span>
|
|||
|
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a> <span class="fu">geom_smooth</span>(<span class="at">formula =</span> y <span class="sc">~</span> x, <span class="at">method =</span> <span class="st">"lm"</span>) <span class="sc">+</span></span>
|
|||
|
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a> <span class="fu">scale_colour_viridis_c</span>() <span class="sc">+</span></span>
|
|||
|
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a> <span class="fu">facet_grid</span>(year <span class="sc">~</span> drv) <span class="sc">+</span></span>
|
|||
|
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a> <span class="fu">coord_fixed</span>() <span class="sc">+</span></span>
|
|||
|
<span id="cb8-7"><a href="#cb8-7" tabindex="-1"></a> <span class="fu">theme_minimal</span>() <span class="sc">+</span></span>
|
|||
|
<span id="cb8-8"><a href="#cb8-8" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.grid.minor =</span> <span class="fu">element_blank</span>())</span></code></pre></div>
|
|||
|
<p><img src="
|
|||
|
<p>If you want to learn more, be sure to take a look at the <a href="https://ggplot2-book.org/">ggplot2 book</a>.</p>
|
|||
|
</div>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<!-- code folding -->
|
|||
|
|
|||
|
|
|||
|
<!-- dynamically load mathjax for compatibility with self-contained -->
|
|||
|
<script>
|
|||
|
(function () {
|
|||
|
var script = document.createElement("script");
|
|||
|
script.type = "text/javascript";
|
|||
|
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
|
|||
|
document.getElementsByTagName("head")[0].appendChild(script);
|
|||
|
})();
|
|||
|
</script>
|
|||
|
|
|||
|
</body>
|
|||
|
</html>
|