30 lines
852 B
R
30 lines
852 B
R
|
library(cluster)
|
||
|
|
||
|
### clusplot() & pam() RESULT checking ...
|
||
|
|
||
|
## plotting votes.diss(dissimilarity) in a bivariate plot and
|
||
|
## partitioning into 2 clusters
|
||
|
data(votes.repub)
|
||
|
votes.diss <- daisy(votes.repub)
|
||
|
for(k in 2:4) {
|
||
|
votes.clus <- pam(votes.diss, k, diss = TRUE)$clustering
|
||
|
print(clusplot(votes.diss, votes.clus, diss = TRUE, shade = TRUE))
|
||
|
}
|
||
|
|
||
|
## plotting iris (dataframe) in a 2-dimensional plot and partitioning
|
||
|
## into 3 clusters.
|
||
|
data(iris)
|
||
|
iris.x <- iris[, 1:4]
|
||
|
|
||
|
for(k in 2:5)
|
||
|
print(clusplot(iris.x, pam(iris.x, k)$clustering, diss = FALSE))
|
||
|
|
||
|
|
||
|
.Random.seed <- c(0L,rep(7654L,3))
|
||
|
## generate 25 objects, divided into 2 clusters.
|
||
|
x <- rbind(cbind(rnorm(10,0,0.5), rnorm(10,0,0.5)),
|
||
|
cbind(rnorm(15,5,0.5), rnorm(15,5,0.5)))
|
||
|
print.default(clusplot(px2 <- pam(x, 2)))
|
||
|
|
||
|
clusplot(px2, labels = 2, col.p = 1 + px2$clustering)
|